on the problems in "1 Algebraic functions/1.2 Trinomial products/1.2.3 General"
Test results for the 179 problems in "1.2.3.2 (dx)^m(a+b $\left.x^{\wedge} n+c x^{\wedge}(2 n)\right)^{\wedge} p . t x t^{\prime \prime}$
Problem 36: Unable to integrate problem.

$$
\int \frac{(d x)^{m}}{\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 60 leaves, 2 steps):

$$
\frac{(d x)^{1+m}\left(b x^{3}+a\right) \text { hypergeom }\left(\left[3, \frac{1}{3}+\frac{m}{3}\right],\left[\frac{4}{3}+\frac{m}{3}\right],-\frac{b x^{3}}{a}\right)}{a^{3} d(1+m) \sqrt{\left(b x^{3}+a\right)^{2}}}
$$

Result (type 8, 28 leaves):

$$
\int \frac{(d x)^{m}}{\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 37: Unable to integrate problem.

$$
\int(d x)^{m}\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 77 leaves, 2 steps):

$$
\frac{(d x)^{1+m}\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p} \text { hypergeom }\left(\left[-2 p, \frac{1}{3}+\frac{m}{3}\right],\left[\frac{4}{3}+\frac{m}{3}\right],-\frac{b x^{3}}{a}\right)}{d(1+m)\left(1+\frac{b x^{3}}{a}\right)^{2 p}}
$$

Result(type 8, 28 leaves):

$$
\int(d x)^{m}\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p} \mathrm{~d} x
$$

Problem 39: Unable to integrate problem.

$$
\int x\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 54 leaves, 2 steps):

$$
\frac{x^{2}\left(b x^{3}+a\right)\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p} \text { hypergeom }\left(\left[1, \frac{5}{3}+2 p\right],\left[\frac{5}{3}\right],-\frac{b x^{3}}{a}\right)}{2 a}
$$

Result(type 8, 24 leaves):

$$
\int x\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p}}{x} \mathrm{~d} x
$$

Optimal(type 5, 63 leaves, 3 steps):

$$
-\frac{\left(b x^{3}+a\right)\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p} \text { hypergeom }\left([1,1+2 p],[2+2 p], 1+\frac{b x^{3}}{a}\right)}{3 a(1+2 p)}
$$

Result(type 8, 26 leaves):

$$
\int \frac{\left(b^{2} x^{6}+2 a b x^{3}+a^{2}\right)^{p}}{x} \mathrm{~d} x
$$

Problem 42: Result is not expressed in closed-form.

$$
\int \frac{x}{c x^{6}+b x^{3}+a} \mathrm{~d} x
$$

Optimal(type 3, 421 leaves, 13 steps):

$$
-\frac{2^{1 / 3} c^{1 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)}{3\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3} \sqrt{-4 a c+b^{2}}}+\frac{c^{1 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right) 2^{1 / 3}}{6\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3} \sqrt{-4 a c+b^{2}}}
$$

$$
-\frac{2^{1 / 3} c^{1 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3} \sqrt{-4 a c+b^{2}}}+\frac{2^{1 / 3} c^{1 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)}{3 \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
$$

$$
-\frac{c^{1 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right) 2^{1 / 3}}{6 \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
$$

$$
+\frac{2^{1 / 3} c^{1 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3 \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
$$

Result(type 7, 40 leaves):

$$
\frac{\left.\sum_{R=\operatorname{RootOf}\left(c \not Z^{6}+b Z^{3}+a\right)} \frac{R \ln \left(x-__{-} R\right)}{2 R^{5} c+R^{2} b}\right)}{3}
$$

Problem 43: Result is not expressed in closed-form.

$$
\int \frac{1}{c x^{6}+b x^{3}+a} \mathrm{~d} x
$$

Optimal(type 3, 421 leaves, 13 steps):
$\frac{2^{2 / 3} c^{2 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)}{3\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \sqrt{-4 a c+b^{2}}}-\frac{c^{2 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right) 2^{2 / 3}}{6\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \sqrt{-4 a c+b^{2}}}$
$-\frac{2^{2 / 3} c^{2 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \sqrt{-4 a c+b^{2}}}-\frac{2^{2 / 3} c^{2 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)}{3 \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}$
$+\frac{c^{2 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right) 2^{2 / 3}}{6 \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}$
$+\frac{2^{2 / 3} c^{2 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3 \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}$
Result(type 7, 39 leaves):

$$
\left.\frac{\left(\sum_{R=\operatorname{RootOf}\left(c \quad Z^{6}+b\right.} Z^{3}+a\right)}{} \frac{\ln \left(x-{ }^{5}\right)}{2 _R^{5} c+R_{-}^{2} b}\right) \frac{3}{}
$$

Problem 49: Unable to integrate problem.

$$
\int x^{5} \sqrt{c x^{6}+b x^{3}+a} d x
$$

Optimal(type 3, 90 leaves, 5 steps):

$$
\frac{\left(c x^{6}+b x^{3}+a\right)^{3 / 2}}{9 c}+\frac{b\left(-4 a c+b^{2}\right) \operatorname{arctanh}\left(\frac{2 c x^{3}+b}{2 \sqrt{c} \sqrt{c x^{6}+b x^{3}+a}}\right)}{48 c^{5 / 2}}-\frac{b\left(2 c x^{3}+b\right) \sqrt{c x^{6}+b x^{3}+a}}{24 c^{2}}
$$

Result(type 8, 80 leaves):

$$
\frac{\left(8 c^{2} x^{6}+2 b c x^{3}+8 a c-3 b^{2}\right) \sqrt{c x^{6}+b x^{3}+a}}{72 c^{2}}+\int-\frac{b\left(4 a c-b^{2}\right) x^{2}}{16 c^{2} \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 50: Unable to integrate problem.

$$
\int \frac{\sqrt{c x^{6}+b x^{3}+a}}{x} \mathrm{~d} x
$$

Optimal(type 3, 85 leaves, 7 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{b x^{3}+2 a}{2 \sqrt{a} \sqrt{c x^{6}+b x^{3}+a}}\right) \sqrt{a}}{3}+\frac{b \operatorname{arctanh}\left(\frac{2 c x^{3}+b}{2 \sqrt{c} \sqrt{c x^{6}+b x^{3}+a}}\right)}{6 \sqrt{c}}+\frac{\sqrt{c x^{6}+b x^{3}+a}}{3}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\sqrt{c x^{6}+b x^{3}+a}}{x} \mathrm{~d} x
$$

Problem 51: Unable to integrate problem.

$$
\int x \sqrt{c x^{6}+b x^{3}+a} d x
$$

Optimal(type 6, 116 leaves, 2 steps):

$$
\frac{x^{2} \text { AppellF1 }\left(\frac{2}{3},-\frac{1}{2},-\frac{1}{2}, \frac{5}{3},-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{6}+b x^{3}+a}}{2 \sqrt{1+\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 8, 48 leaves):

$$
\frac{x^{2} \sqrt{c x^{6}+b x^{3}+a}}{5}+\int \frac{3 x\left(b x^{3}+2 a\right)}{10 \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 52: Unable to integrate problem.

$$
\int \frac{\sqrt{c x^{6}+b x^{3}+a}}{x^{3}} d x
$$

Optimal(type 6, 116 leaves, 2 steps):

$$
-\frac{\text { AppellFI }\left(-\frac{2}{3},-\frac{1}{2},-\frac{1}{2}, \frac{1}{3},-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{6}+b x^{3}+a}}{2 x^{2} \sqrt{1+\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 8, 47 leaves):

$$
-\frac{\sqrt{c x^{6}+b x^{3}+a}}{2 x^{2}}+\int \frac{\frac{3 c x^{3}}{2}+\frac{3 b}{4}}{\sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 53: Unable to integrate problem.

$$
\int x^{2}\left(c x^{6}+b x^{3}+a\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 106 leaves, 5 steps):

$$
\frac{\left(2 c x^{3}+b\right)\left(c x^{6}+b x^{3}+a\right)^{3 / 2}}{24 c}+\frac{\left(-4 a c+b^{2}\right)^{2} \operatorname{arctanh}\left(\frac{2 c x^{3}+b}{2 \sqrt{c} \sqrt{c x^{6}+b x^{3}+a}}\right)}{128 c^{5 / 2}}-\frac{\left(-4 a c+b^{2}\right)\left(2 c x^{3}+b\right) \sqrt{c x^{6}+b x^{3}+a}}{64 c^{2}}
$$

Result(type 8, 109 leaves):

$$
\frac{\left(16 x^{9} c^{3}+24 b x^{6} c^{2}+40 a c^{2} x^{3}+2 b^{2} c x^{3}+20 a b c-3 b^{3}\right) \sqrt{c x^{6}+b x^{3}+a}}{192 c^{2}}+\int \frac{3\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) x^{2}}{128 c^{2} \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 54: Unable to integrate problem.

$$
\int \frac{\left(c x^{6}+b x^{3}+a\right)^{3 / 2}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 122 leaves, 8 steps):

$$
-\frac{\left(c x^{6}+b x^{3}+a\right)^{3 / 2}}{3 x^{3}}-\frac{b \operatorname{arctanh}\left(\frac{b x^{3}+2 a}{2 \sqrt{a} \sqrt{c x^{6}+b x^{3}+a}}\right) \sqrt{a}}{2}+\frac{\left(4 a c+b^{2}\right) \operatorname{arctanh}\left(\frac{2 c x^{3}+b}{2 \sqrt{c} \sqrt{c x^{6}+b x^{3}+a}}\right)}{8 \sqrt{c}}+\frac{\left(2 c x^{3}+3 b\right) \sqrt{c x^{6}+b x^{3}+a}}{4}
$$

Result(type 8, 77 leaves):

$$
-\frac{a \sqrt{c x^{6}+b x^{3}+a}}{3 x^{3}}+\int \frac{2 c^{2} x^{9}+4 b c x^{6}+4 a c x^{3}+2 b^{2} x^{3}+3 a b}{2 x \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 55: Unable to integrate problem.

$$
\int \frac{\left(c x^{6}+b x^{3}+a\right)^{3 / 2}}{x^{7}} \mathrm{~d} x
$$

Optimal(type 3, 123 leaves, 8 steps):

$$
-\frac{\left(c x^{6}+b x^{3}+a\right)^{3 / 2}}{6 x^{6}}-\frac{\left(4 a c+b^{2}\right) \operatorname{arctanh}\left(\frac{b x^{3}+2 a}{2 \sqrt{a} \sqrt{c x^{6}+b x^{3}+a}}\right)}{8 \sqrt{a}}+\frac{b \operatorname{arctanh}\left(\frac{2 c x^{3}+b}{2 \sqrt{c} \sqrt{c x^{6}+b x^{3}+a}}\right) \sqrt{c}}{2}-\frac{\left(-2 c x^{3}+b\right) \sqrt{c x^{6}+b x^{3}+a}}{4 x^{3}}
$$

Result(type 8, 76 leaves):

$$
-\frac{\sqrt{c x^{6}+b x^{3}+a}\left(5 b x^{3}+2 a\right)}{12 x^{6}}+\int \frac{8 c^{2} x^{6}+16 b c x^{3}+12 a c+3 b^{2}}{8 x \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 56: Unable to integrate problem.

$$
\int \frac{\left(c x^{6}+b x^{3}+a\right)^{3 / 2}}{x^{2}} d x
$$

Optimal(type 6, 117 leaves, 2 steps):

$$
-\frac{a \text { AppellF1 }\left(-\frac{1}{3},-\frac{3}{2},-\frac{3}{2}, \frac{2}{3},-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c x^{6}+b x^{3}+a}}{x \sqrt{1+\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}}}
$$

Result(type 8, 74 leaves):

$$
-\frac{\sqrt{c x^{6}+b x^{3}+a}\left(-10 c x^{6}-19 b x^{3}+80 a\right)}{80 x}+\int \frac{27 x\left(20 a c x^{3}+b^{2} x^{3}+12 a b\right)}{160 \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 57: Unable to integrate problem.

$$
\int \frac{x^{11}}{\sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 103 leaves, 5 steps):

$$
-\frac{b\left(-12 a c+5 b^{2}\right) \operatorname{arctanh}\left(\frac{2 c x^{3}+b}{2 \sqrt{c} \sqrt{c x^{6}+b x^{3}+a}}\right)}{48 c^{7 / 2}}+\frac{x^{6} \sqrt{c x^{6}+b x^{3}+a}}{9 c}+\frac{\left(-10 b c x^{3}-16 a c+15 b^{2}\right) \sqrt{c x^{6}+b x^{3}+a}}{72 c^{3}}
$$

Result(type 8, 80 leaves):

$$
-\frac{\left(-8 c^{2} x^{6}+10 b c x^{3}+16 a c-15 b^{2}\right) \sqrt{c x^{6}+b x^{3}+a}}{72 c^{3}}+\int \frac{b\left(12 a c-5 b^{2}\right) x^{2}}{16 c^{3} \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 58: Unable to integrate problem.

$$
\int \frac{x^{8}}{\sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 86 leaves, 5 steps):

$$
\frac{\left(-4 a c+3 b^{2}\right) \operatorname{arctanh}\left(\frac{2 c x^{3}+b}{2 \sqrt{c} \sqrt{c x^{6}+b x^{3}+a}}\right)}{24 c^{5 / 2}}-\frac{b \sqrt{c x^{6}+b x^{3}+a}}{4 c^{2}}+\frac{x^{3} \sqrt{c x^{6}+b x^{3}+a}}{6 c}
$$

Result(type 8, 64 leaves):

$$
-\frac{\left(-2 c x^{3}+3 b\right) \sqrt{c x^{6}+b x^{3}+a}}{12 c^{2}}+\int-\frac{x^{2}\left(4 a c-3 b^{2}\right)}{8 c^{2} \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 59: Unable to integrate problem.

$$
\int \frac{1}{x^{4} \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 58 leaves, 4 steps):

$$
\frac{b \operatorname{arctanh}\left(\frac{b x^{3}+2 a}{2 \sqrt{a} \sqrt{c x^{6}+b x^{3}+a}}\right)}{6 a^{3 / 2}}-\frac{\sqrt{c x^{6}+b x^{3}+a}}{3 a x^{3}}
$$

Result(type 8, 48 leaves):

$$
-\frac{\sqrt{c x^{6}+b x^{3}+a}}{3 a x^{3}}+\int-\frac{b}{2 a x \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 60: Unable to integrate problem.

$$
\int \frac{1}{x^{13} \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 166 leaves, 7 steps):
$-\frac{\left(48 a^{2} c^{2}-120 a b^{2} c+35 b^{4}\right) \operatorname{arctanh}\left(\frac{b x^{3}+2 a}{2 \sqrt{a} \sqrt{c x^{6}+b x^{3}+a}}\right)}{384 a^{9 / 2}}-\frac{\sqrt{c x^{6}+b x^{3}+a}}{12 a x^{12}}+\frac{7 b \sqrt{c x^{6}+b x^{3}+a}}{72 a^{2} x^{9}}-\frac{\left(-36 a c+35 b^{2}\right) \sqrt{c x^{6}+b x^{3}+a}}{288 a^{3} x^{6}}$

$$
+\frac{5 b\left(-44 a c+21 b^{2}\right) \sqrt{c x^{6}+b x^{3}+a}}{576 a^{4} x^{3}}
$$

Result(type 8, 117 leaves):

$$
-\frac{\sqrt{c x^{6}+b x^{3}+a}\left(220 a b c x^{9}-105 b^{3} x^{9}-72 a^{2} c x^{6}+70 a b^{2} x^{6}-56 a^{2} b x^{3}+48 a^{3}\right)}{576 a^{4} x^{12}}+\int \frac{48 a^{2} c^{2}-120 a b^{2} c+35 b^{4}}{128 a^{4} x \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 61: Unable to integrate problem.

$$
\int \frac{x}{\sqrt{c x^{6}+b x^{3}+a}} d x
$$

Optimal(type 6, 116 leaves, 2 steps):

$$
\frac{x^{2} \text { AppellF1 }\left(\frac{2}{3}, \frac{1}{2}, \frac{1}{2}, \frac{5}{3},-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{2 \sqrt{c x^{6}+b x^{3}+a}}}{\frac{1+\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}}{}}
$$

Result(type 8, 18 leaves):

$$
\int \frac{x}{\sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 62: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 6, 113 leaves, 2 steps):

$$
\frac{\text { xAppellF } 1\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{4}{3},-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{\sqrt{1+\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}}}}{\sqrt{c x^{6}+b x^{3}+a}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{1}{\sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 63: Unable to integrate problem.

$$
\int \frac{1}{x^{3} \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 6, 116 leaves, 2 steps):

$$
-\frac{\text { AppellF1 }\left(-\frac{2}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3},-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}}}{2 x^{2} \sqrt{c x^{6}+b x^{3}+a}}
$$

Result(type 8, 52 leaves):

$$
-\frac{\sqrt{c x^{6}+b x^{3}+a}}{2 a x^{2}}+\int-\frac{-2 c x^{3}+b}{4 a \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 65: Unable to integrate problem.

$$
\int \frac{1}{x\left(c x^{6}+b x^{3}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal (type 3, 78 leaves, 5 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{b x^{3}+2 a}{2 \sqrt{a} \sqrt{c x^{6}+b x^{3}+a}}\right)}{3 a^{3 / 2}}+\frac{2\left(b c x^{3}-2 a c+b^{2}\right)}{3 a\left(-4 a c+b^{2}\right) \sqrt{c x^{6}+b x^{3}+a}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{1}{x\left(c x^{6}+b x^{3}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 66: Unable to integrate problem.

$$
\int \frac{1}{x^{10}\left(c x^{6}+b x^{3}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 230 leaves, 7 steps):

$$
\begin{aligned}
& \frac{5 b\left(-12 a c+7 b^{2}\right) \operatorname{arctanh}\left(\frac{b x^{3}+2 a}{2 \sqrt{a} \sqrt{c x^{6}+b x^{3}+a}}\right)}{48 a^{9 / 2}}+\frac{2\left(b c x^{3}-2 a c+b^{2}\right)}{3 a\left(-4 a c+b^{2}\right) x^{9} \sqrt{c x^{6}+b x^{3}+a}}-\frac{\left(-16 a c+7 b^{2}\right) \sqrt{c x^{6}+b x^{3}+a}}{9 a^{2}\left(-4 a c+b^{2}\right) x^{9}} \\
& \quad+\frac{b\left(-116 a c+35 b^{2}\right) \sqrt{c x^{6}+b x^{3}+a}}{36 a^{3}\left(-4 a c+b^{2}\right) x^{6}}-\frac{\left(256 a^{2} c^{2}-460 a b^{2} c+105 b^{4}\right) \sqrt{c x^{6}+b x^{3}+a}}{72 a^{4}\left(-4 a c+b^{2}\right) x^{3}}
\end{aligned}
$$

Result(type 8, 159 leaves):

$$
-\frac{\sqrt{c x^{6}+b x^{3}+a}\left(-40 a c x^{6}+57 b^{2} x^{6}-22 a b x^{3}+8 a^{2}\right)}{72 a^{4} x^{9}}+\int \frac{28 a b c^{2} x^{6}-19 b^{3} c x^{6}+16 a^{2} c^{2} x^{3}+12 a b^{2} c x^{3}-19 b^{4} x^{3}+60 a^{2} b c-35 a b^{3}}{16 a^{4} x c\left(x^{6}+\frac{b x^{3}}{c}+\frac{a}{c}\right) \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 67: Unable to integrate problem.

$$
\int \frac{x^{3}}{\left(c x^{6}+b x^{3}+a\right)^{3 / 2}} d x
$$

Optimal(type 6, 119 leaves, 2 steps):

$$
\frac{x^{4} \text { AppellF1 }\left(\frac{4}{3}, \frac{3}{2}, \frac{3}{2}, \frac{7}{3},-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{4 a \sqrt{c x^{6}+b x^{3}+a}}}{\frac{1+\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}}{}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{3}}{\left(c x^{6}+b x^{3}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 68: Unable to integrate problem.

$$
\int \frac{1}{x^{3}\left(c x^{6}+b x^{3}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 119 leaves, 2 steps):

$$
\frac{\text { AppellF1 }\left(-\frac{2}{3}, \frac{3}{2}, \frac{3}{2}, \frac{1}{3},-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}}}{2 a x^{2} \sqrt{c x^{6}+b x^{3}+a}}
$$

Result(type 8, 100 leaves):

$$
-\frac{\sqrt{c x^{6}+b x^{3}+a}}{2 a^{2} x^{2}}+\int-\frac{-2 c^{2} x^{9}-b c x^{6}+2 a c x^{3}+b^{2} x^{3}+5 a b}{4 a^{2} c\left(x^{6}+\frac{b x^{3}}{c}+\frac{a}{c}\right) \sqrt{c x^{6}+b x^{3}+a}} \mathrm{~d} x
$$

Problem 69: Unable to integrate problem.

$$
\int \frac{(d x)^{m}}{c x^{6}+b x^{3}+a} \mathrm{~d} x
$$

Optimal(type 5, 157 leaves, 3 steps):

$$
\frac{2 c(d x)^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{3}+\frac{m}{3}\right],\left[\frac{4}{3}+\frac{m}{3}\right],-\frac{2 c x^{3}}{b-\sqrt{-4 a c+b^{2}}}\right)}{d(1+m)\left(b-\sqrt{-4 a c+b^{2}}\right) \sqrt{-4 a c+b^{2}}}-\frac{2 c(d x)^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{3}+\frac{m}{3}\right],\left[\frac{4}{3}+\frac{m}{3}\right],-\frac{2 c x^{3}}{b+\sqrt{-4 a c+b^{2}}}\right)}{d(1+m) \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)}
$$

Result(type 8, 22 leaves):

$$
\int \frac{(d x)^{m}}{c x^{6}+b x^{3}+a} \mathrm{~d} x
$$

Problem 70: Unable to integrate problem.

$$
\int x^{5}\left(c x^{6}+b x^{3}+a\right)^{p} \mathrm{~d} x
$$

Optimal(type 5, 146 leaves, 3 steps):

$$
\frac{\left(c x^{6}+b x^{3}+a\right)^{1+p}}{6 c(1+p)}+\frac{2^{p} b\left(c x^{6}+b x^{3}+a\right)^{1+p} \text { hypergeom }\left([-p, 1+p],[2+p], \frac{2 c x^{3}+\sqrt{-4 a c+b^{2}}+b}{2 \sqrt{-4 a c+b^{2}}}\right)\left(\frac{-2 c x^{3}+\sqrt{-4 a c+b^{2}}-b}{\sqrt{-4 a c+b^{2}}}\right)^{-1-p}}{3 c(1+p) \sqrt{-4 a c+b^{2}}}
$$

Result(type 8, 20 leaves):

$$
\int x^{5}\left(c x^{6}+b x^{3}+a\right)^{p} \mathrm{~d} x
$$

Problem 71: Unable to integrate problem.

$$
\int x^{2}\left(c x^{6}+b x^{3}+a\right)^{p} d x
$$

Optimal(type 5, 117 leaves, 2 steps):

$$
3(1+p) \sqrt{-4 a c+b^{2}}
$$

Result(type 8, 20 leaves):

$$
\int x^{2}\left(c x^{6}+b x^{3}+a\right)^{p} \mathrm{~d} x
$$

Problem 72: Unable to integrate problem.

$$
\int \frac{\left(c x^{6}+b x^{3}+a\right)^{p}}{x} \mathrm{~d} x
$$

Optimal(type 6, 147 leaves, 3 steps):

$$
\frac{2^{-1+2 p}\left(c x^{6}+b x^{3}+a\right)^{p} \text { AppellF } 1\left(-2 p,-p,-p, 1-2 p, \frac{-b-\sqrt{-4 a c+b^{2}}}{2 c x^{3}}, \frac{-b+\sqrt{-4 a c+b^{2}}}{2 c x^{3}}\right)}{3 p\left(\frac{2 c x^{3}-\sqrt{-4 a c+b^{2}}+b}{c x^{3}}\right)^{p}\left(\frac{2 c x^{3}+\sqrt{-4 a c+b^{2}}+b}{c x^{3}}\right)^{p}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\left(c x^{6}+b x^{3}+a\right)^{p}}{x} \mathrm{~d} x
$$

Problem 73: Unable to integrate problem.

$$
\int \frac{\left(c x^{6}+b x^{3}+a\right)^{p}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 6, 152 leaves, 3 steps):

$$
-\frac{4^{p}\left(c x^{6}+b x^{3}+a\right)^{p} \text { AppellF1 }\left(1-2 p,-p,-p, 2-2 p, \frac{-b-\sqrt{-4 a c+b^{2}}}{2 c x^{3}}, \frac{-b+\sqrt{-4 a c+b^{2}}}{2 c x^{3}}\right)}{3(1-2 p) x^{3}\left(\frac{2 c x^{3}-\sqrt{-4 a c+b^{2}}+b}{c x^{3}}\right)^{p}\left(\frac{2 c x^{3}+\sqrt{-4 a c+b^{2}}+b}{c x^{3}}\right)^{p}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\left(c x^{6}+b x^{3}+a\right)^{p}}{x^{4}} \mathrm{~d} x
$$

Problem 82: Unable to integrate problem.

$$
\int \frac{x^{m}}{c x^{8}+b x^{4}+a} \mathrm{~d} x
$$

Optimal(type 5, 147 leaves, 3 steps):

$$
\frac{2 c x^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{4}+\frac{m}{4}\right],\left[\frac{5}{4}+\frac{m}{4}\right],-\frac{2 c x^{4}}{b-\sqrt{-4 a c+b^{2}}}\right)}{(1+m)\left(b-\sqrt{-4 a c+b^{2}}\right) \sqrt{-4 a c+b^{2}}}-\frac{2 c x^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{4}+\frac{m}{4}\right],\left[\frac{5}{4}+\frac{m}{4}\right],-\frac{2 c x^{4}}{b+\sqrt{-4 a c+b^{2}}}\right)}{(1+m) \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{m}}{c x^{8}+b x^{4}+a} \mathrm{~d} x
$$

$$
\int \frac{x^{m}}{x^{8}+x^{4}+1} \mathrm{~d} x
$$

Optimal(type 5, 107 leaves, 3 steps):

$$
-\frac{2 x^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{4}+\frac{m}{4}\right],\left[\frac{5}{4}+\frac{m}{4}\right],-\frac{2 x^{4}}{1+\mathrm{I} \sqrt{3}}\right) \sqrt{3}}{3(1+m)(\mathrm{I}-\sqrt{3})}+\frac{2 x^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{4}+\frac{m}{4}\right],\left[\frac{5}{4}+\frac{m}{4}\right],-\frac{2 x^{4}}{1-\mathrm{I} \sqrt{3}}\right) \sqrt{3}}{3(1+m)(\mathrm{I}+\sqrt{3})}
$$

Result(type 8, 16 leaves):

$$
\int \frac{x^{m}}{x^{8}+x^{4}+1} \mathrm{~d} x
$$

Problem 94: Unable to integrate problem.

$$
\int \frac{x^{m}}{x^{8}-x^{4}+1} \mathrm{~d} x
$$

Optimal(type 5, 107 leaves, 3 steps):

$$
-\frac{2 x^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{4}+\frac{m}{4}\right],\left[\frac{5}{4}+\frac{m}{4}\right], \frac{2 x^{4}}{1+\mathrm{I} \sqrt{3}}\right) \sqrt{3}}{3(1+m)(\mathrm{I}-\sqrt{3})}+\frac{2 x^{1+m} \text { hypergeom }\left(\left[1, \frac{1}{4}+\frac{m}{4}\right],\left[\frac{5}{4}+\frac{m}{4}\right], \frac{2 x^{4}}{1-\mathrm{I} \sqrt{3}}\right) \sqrt{3}}{3(1+m)(\mathrm{I}+\sqrt{3})}
$$

Result(type 8, 18 leaves):

$$
\int \frac{x^{m}}{x^{8}-x^{4}+1} \mathrm{~d} x
$$

Problem 98: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{2}\left(x^{8}-x^{4}+1\right)} \mathrm{d} x
$$

Optimal(type 3, 312 leaves, 22 steps):
$-\frac{1}{x}+\frac{\ln \left(1+x^{2}-x\left(\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\right)}{8}-\frac{\ln \left(1+x^{2}+x\left(\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\right)}{8}+\frac{\arctan \left(\frac{\left.-2 x+\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)}{4\left(\frac{3 \sqrt{2}}{2}-\frac{\sqrt{6}}{2}\right)} \frac{\sqrt{2}}{2}\right)}{4}$

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{2 x+\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}\right)}{4\left(\frac{3 \sqrt{2}}{2}-\frac{\sqrt{6}}{2}\right)}-\frac{\ln \left(1+x^{2}-x\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{6}\right)}{8}+\frac{\ln \left(1+x^{2}+x\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{6}\right)}{8} \\
& -\frac{\arctan \left(\frac{-2 x+\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}\right)}{4\left(\frac{3 \sqrt{2}}{2}+\frac{\sqrt{6}}{2}\right)}+\frac{\arctan \left(\frac{\left.2 x+\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)}{\left.\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)}\right.}{4\left(\frac{3 \sqrt{2}}{2}+\frac{\sqrt{6}}{2}\right)}
\end{aligned}
$$

Result(type 7, 51 leaves):

$$
-\frac{\left(\sum_{R=R o o t O f\left(Z^{8}-Z^{4}+1\right)} \frac{\left(R^{6}-R^{2}\right) \ln (x-R)}{2 _R^{7}-R^{3}}\right)}{4}-\frac{1}{x}
$$

Problem 99: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{4}\left(x^{8}-x^{4}+1\right)} \mathrm{d} x
$$

Optimal(type 3, 304 leaves, 20 steps):

$$
\begin{aligned}
& \left.\left.-\frac{1}{3 x^{3}}+\frac{\arctan \left(\frac{-2 x+\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\right)}{4}\right)-\frac{\arctan \left(\frac{2 x+\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\right)}{4}\right) \\
& \left.+\frac{\ln \left(1+x^{2}-x\left(\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\right)}{8}-\frac{\ln \left(1+x^{2}+x\left(\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\right)}{8}\right) \\
& \\
& \\
& -\frac{\arctan \left(\frac{-2 x+\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}\right)\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{6}\right)}{\arctan \left(\frac{2 x+\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}\right)\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{6}\right)}
\end{aligned}
$$

$$
-\frac{\ln \left(1+x^{2}-x\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{6}\right)}{8}+\frac{\ln \left(1+x^{2}+x\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{6}\right)}{8}
$$

Result(type 7, 49 leaves):

$$
-\frac{1}{3 x^{3}}+\frac{\left.\sum_{-R=\operatorname{RootOf}\left(Z^{8}-Z^{4}+1\right)} \frac{\left(-R^{4}+1\right) \ln \left(x-_R\right)}{2 _R^{7}-_R^{3}}\right)}{4}
$$

Problem 100: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{9}}{x^{8}+3 x^{4}+1} d x
$$

Optimal(type 3, 51 leaves, 5 steps):

$$
\frac{x^{2}}{2}+\frac{\arctan \left(x^{2}\left(\frac{\sqrt{5}}{2}+\frac{1}{2}\right)\right)\left(1-\frac{2 \sqrt{5}}{5}\right)}{2}-\frac{\arctan \left(\frac{x^{2} \sqrt{2}}{\sqrt{3+\sqrt{5}}}\right)\left(1+\frac{2 \sqrt{5}}{5}\right)}{2}
$$

Result(type 3, 116 leaves):

$$
\frac{x^{2}}{2}-\frac{7 \sqrt{5} \arctan \left(\frac{4 x^{2}}{2 \sqrt{5}+2}\right)}{5(2 \sqrt{5}+2)}-\frac{3 \arctan \left(\frac{4 x^{2}}{2 \sqrt{5}+2}\right)}{2 \sqrt{5}+2}+\frac{7 \sqrt{5} \arctan \left(\frac{4 x^{2}}{2 \sqrt{5}-2}\right)}{5(2 \sqrt{5}-2)}-\frac{3 \arctan \left(\frac{4 x^{2}}{2 \sqrt{5}-2}\right)}{2 \sqrt{5}-2}
$$

Problem 101: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{3}\left(x^{8}+3 x^{4}+1\right)} d x
$$

Optimal(type 3, 54 leaves, 5 steps):

$$
-\frac{1}{2 x^{2}}-\frac{\arctan \left(x^{2}\left(\frac{\sqrt{5}}{2}+\frac{1}{2}\right)\right)(3+\sqrt{5})^{3 / 2} \sqrt{10}}{40}+\frac{\arctan \left(\frac{x^{2} \sqrt{2}}{\sqrt{3+\sqrt{5}}}\right)\left(1-\frac{2 \sqrt{5}}{5}\right)}{2}
$$

Result(type 3, 116 leaves):

$$
-\frac{1}{2 x^{2}}+\frac{3 \sqrt{5} \arctan \left(\frac{4 x^{2}}{2 \sqrt{5}+2}\right)}{5(2 \sqrt{5}+2)}-\frac{\arctan \left(\frac{4 x^{2}}{2 \sqrt{5}+2}\right)}{2 \sqrt{5}+2}-\frac{\arctan \left(\frac{4 x^{2}}{2 \sqrt{5}-2}\right)}{2 \sqrt{5}-2}-\frac{3 \sqrt{5} \arctan \left(\frac{4 x^{2}}{2 \sqrt{5}-2}\right)}{5(2 \sqrt{5}-2)}
$$

Problem 102: Result is not expressed in closed-form.

$$
\int \frac{x^{4}}{x^{8}+3 x^{4}+1} \mathrm{~d} x
$$

Optimal(type 3, 293 leaves, 19 steps):

$$
\begin{aligned}
& \arctan \left(-1+\frac{2^{3 / 4} x}{\left.(3-\sqrt{5})^{1 / 4}\right)(3-\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}} \begin{array}{l}
20 \\
\quad+\frac{\ln \left(2 x^{2}-22^{1 / 4} x(3-\sqrt{5})^{1 / 4}+\sqrt{5}-1\right)(3-\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{40}-\frac{\ln \left(2 x^{2}+22^{1 / 4} x(3-\sqrt{5})^{1 / 4}+\sqrt{5}-1\right)\left(3-\sqrt{\left.(3-\sqrt{5})^{1 / 4}\right)(3-\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}\right.}{40} \\
\quad \arctan \left(-1+\frac{2^{3 / 4} x}{(3+\sqrt{5})^{1 / 4}}\right)(3+\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5} 2^{1 / 4} \sqrt{5} \\
+\frac{\arctan \left(1+\frac{2^{3 / 4} x}{\left.(3+\sqrt{5})^{1 / 4}\right)(3+\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}\right.}{20}+\frac{20}{40} \\
\quad-\frac{\ln \left(2 x^{2}-22^{1 / 4} x(3+\sqrt{5})^{1 / 4}+\sqrt{5}+1\right)(3+\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{40}+\frac{\ln \left(2 x^{2}+22^{1 / 4} x(3+\sqrt{5})^{1 / 4}+\sqrt{5}+1\right)(3+\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{40}
\end{array} .\right.
\end{aligned}
$$

Result(type 7, 39 leaves):

$$
\left.\frac{\left(\sum_{R=\operatorname{RootOf}\left(Z^{8}+3\right.} Z^{4}+1\right)}{} \frac{R^{4} \ln (x-R)}{2 _R^{7}+3 _R^{3}}\right)
$$

Problem 103: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{8}+3 x^{4}+1} d x
$$

Optimal(type 3, 221 leaves, 19 steps):

$$
\begin{aligned}
& -\frac{\arctan (x \sqrt{\sqrt{5}-1}-1) \sqrt{-20+10 \sqrt{5}}}{20}-\frac{\arctan (1+x \sqrt{\sqrt{5}-1}) \sqrt{-20+10 \sqrt{5}}}{20}+\frac{\ln \left(1+2 x^{2}+\sqrt{5}-2 x \sqrt{\sqrt{5}+1}\right) \sqrt{-20+10 \sqrt{5}}}{40} \\
& -\frac{\ln \left(1+2 x^{2}+\sqrt{5}+2 x \sqrt{\sqrt{5}+1}\right) \sqrt{-20+10 \sqrt{5}}}{40}+\frac{\arctan (x \sqrt{\sqrt{5}+1}-1) \sqrt{20+10 \sqrt{5}}}{20}+\frac{\arctan (1+x \sqrt{\sqrt{5}+1}) \sqrt{20+10 \sqrt{5}}}{20} \\
& \quad-\frac{\ln \left(-1+2 x^{2}+\sqrt{5}-2 x \sqrt{\sqrt{5}-1}\right) \sqrt{20+10 \sqrt{5}}}{40}+\frac{\ln \left(-1+2 x^{2}+\sqrt{5}+2 x \sqrt{\sqrt{5}-1}\right) \sqrt{20+10 \sqrt{5}}}{40}
\end{aligned}
$$

Result(type 7, 36 leaves):

$$
\left.\frac{\left(\sum_{R=\operatorname{RootOf}\left(\not Z^{8}+3\right.} Z Z ⿱^{4}+1\right)}{} \frac{\ln \left(x-_R\right)}{2 R^{7}+3 _R^{3}}\right) \frac{4}{4}
$$

Problem 104: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{2}\left(x^{8}+3 x^{4}+1\right)} \mathrm{d} x
$$

Optimal(type 3, 270 leaves, 20 steps):

$$
\begin{aligned}
-\frac{1}{x} & +\frac{\arctan \left(-1+\frac{2^{3 / 4} x}{(3+\sqrt{5})^{1 / 4}}\right)(6150-2750 \sqrt{5})^{1 / 4}}{20}+\frac{\arctan \left(1+\frac{2^{3 / 4} x}{\left.(3+\sqrt{5})^{1 / 4}\right)(6150-2750 \sqrt{5})^{1 / 4}}\right.}{20} \\
& +\frac{\ln \left(2 x^{2}-22^{1 / 4} x(3+\sqrt{5})^{1 / 4}+\sqrt{5}+1\right)(6150-2750 \sqrt{5})^{1 / 4}}{40}-\frac{\ln \left(2 x^{2}+22^{1 / 4} x(3+\sqrt{5})^{1 / 4}+\sqrt{5}+1\right)(6150-2750 \sqrt{5})^{1 / 4}}{40} \\
& -\frac{\arctan \left(-1+\frac{2^{3 / 4} x}{(3-\sqrt{5})^{1 / 4}}\right)(246+110 \sqrt{5})^{1 / 4} \sqrt{5}-\arctan \left(1+\frac{2^{3 / 4} x}{\left.(3-\sqrt{5})^{1 / 4}\right)(246+110 \sqrt{5})^{1 / 4} \sqrt{5}}\right.}{20}-\frac{20}{40} \\
& -\frac{\ln \left(2 x^{2}-22^{1 / 4} x(3-\sqrt{5})^{1 / 4}+\sqrt{5}-1\right)(246+110 \sqrt{5})^{1 / 4} \sqrt{5}}{40}+\frac{\ln \left(2 x^{2}+22^{1 / 4} x(3-\sqrt{5})^{1 / 4}+\sqrt{5}-1\right)(246+110 \sqrt{5})^{1 / 4} \sqrt{5}}{40}
\end{aligned}
$$

Result(type 7, 51 leaves):

$$
\left.-\frac{\left.\sum_{R=\operatorname{RootOf}\left(Z^{8}+3\right.} Z^{4}+1\right)}{} \frac{\left(R^{6}+3 _R^{2}\right) \ln \left(x-_R\right)}{2 _R^{7}+3 _R^{3}}\right)-\frac{1}{x}
$$

Problem 112: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\left(c+\frac{a}{x^{2}}+\frac{b}{x}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 188 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{b\left(-11 a c+3 b^{2}\right) x}{c^{3}\left(-4 a c+b^{2}\right)}+\frac{\left(-8 a c+3 b^{2}\right) x^{2}}{2 c^{2}\left(-4 a c+b^{2}\right)}-\frac{b x^{3}}{c\left(-4 a c+b^{2}\right)}+\frac{x^{4}(b x+2 a)}{\left(-4 a c+b^{2}\right)\left(c x^{2}+b x+a\right)}+\frac{b\left(30 a^{2} c^{2}-20 a b^{2} c+3 b^{4}\right) \operatorname{arctanh}\left(\frac{2 c x+b}{\left.\sqrt{-4 a c+b^{2}}\right)}\right.}{c^{4}\left(-4 a c+b^{2}\right)^{3 / 2}} \\
& \quad+\frac{\left(-2 a c+3 b^{2}\right) \ln \left(c x^{2}+b x+a\right)}{2 c^{4}}
\end{aligned}
$$

Result(type 3, 661 leaves):

$$
\begin{aligned}
\frac{x^{2}}{2 c^{2}} & -\frac{2 b x}{c^{3}}-\frac{5 b x a^{2}}{c^{2}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}+\frac{5 b^{3} x a}{c^{3}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}-\frac{b^{5} x}{c^{4}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}-\frac{2 a^{3}}{c^{2}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{4 a^{2} b^{2}}{c^{3}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}-\frac{4 \ln \left(\left(4 a c-b^{2}\right)\left(c x^{2}+b x+a\right)\right) a^{2}}{c^{4}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}-\frac{\left.4 a c-b^{2}\right)}{c^{2}(4 a}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{7 \ln \left(\left(4 a c-b^{2}\right)\left(c x^{2}+b x+a\right)\right) a b^{2}}{c^{3}\left(4 a c-b^{2}\right)}-\frac{3 \ln \left(\left(4 a c-b^{2}\right)\left(c x^{2}+b x+a\right)\right) b^{4}}{2 c^{4}\left(4 a c-b^{2}\right)}+\frac{30 \arctan \left(\frac{2 c\left(4 a c-b^{2}\right) x+b\left(4 a c-b^{2}\right)}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) a^{2} b}{c^{2} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}} \\
& -\frac{20 \arctan \left(\frac{2 c\left(4 a c-b^{2}\right) x+b\left(4 a c-b^{2}\right)}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) a b^{3}}{c^{3} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}+\frac{3 \arctan \left(\frac{2 c\left(4 a c-b^{2}\right) x+b\left(4 a c-b^{2}\right)}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b^{5}}{c^{4} \sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}
\end{aligned}
$$

Problem 114: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(c+\frac{a}{x^{2}}+\frac{b}{x}\right)^{2} x^{7}} \mathrm{~d} x
$$

Optimal(type 3, 194 leaves, 8 steps):

$$
\begin{aligned}
& \frac{8 a c-3 b^{2}}{2 a^{2}\left(-4 a c+b^{2}\right) x^{2}}+\frac{b\left(-11 a c+3 b^{2}\right)}{a^{3}\left(-4 a c+b^{2}\right) x}+\frac{b c x-2 a c+b^{2}}{a\left(-4 a c+b^{2}\right) x^{2}\left(c x^{2}+b x+a\right)}+\frac{b\left(30 a^{2} c^{2}-20 a b^{2} c+3 b^{4}\right) \operatorname{arctanh}\left(\frac{2 c x+b}{\sqrt{-4 a c+b^{2}}}\right)}{a^{4}\left(-4 a c+b^{2}\right)^{3 / 2}} \\
& \quad+\frac{\left(-2 a c+3 b^{2}\right) \ln (x)}{a^{4}}-\frac{\left(-2 a c+3 b^{2}\right) \ln \left(c x^{2}+b x+a\right)}{2 a^{4}}
\end{aligned}
$$

Result(type 3, 645 leaves):

$$
\begin{aligned}
& -\frac{1}{2 a^{2} x^{2}}-\frac{2 \ln (x) c}{a^{3}}+\frac{3 \ln (x) b^{2}}{a^{4}}+\frac{2 b}{a^{3} x}+\frac{3 c^{2} b x}{a^{2}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}-\frac{c b^{3} x}{a^{3}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}-\frac{2 c^{2}}{a\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{4 b^{2} c}{a^{2}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}-\frac{b^{4}}{a^{3}\left(c x^{2}+b x+a\right)\left(4 a c-b^{2}\right)}+\frac{4 c^{2} \ln \left(\left(4 a c-b^{2}\right)\left(c x^{2}+b x+a\right)\right)}{a^{2}\left(4 a c-b^{2}\right)} \\
& -\frac{7 c \ln \left(\left(4 a c-b^{2}\right)\left(c x^{2}+b x+a\right)\right) b^{2}}{a^{3}\left(4 a c-b^{2}\right)}+\frac{3 \ln \left(\left(4 a c-b^{2}\right)\left(c x^{2}+b x+a\right)\right) b^{4}}{2 a^{4}\left(4 a c-b^{2}\right)}+\frac{30 \arctan \left(\frac{2 c\left(4 a c-b^{2}\right) x+b\left(4 a c-b^{2}\right)}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right)}{c^{2} b}
\end{aligned}
$$

$$
-\frac{20 \arctan \left(\frac{2 c\left(4 a c-b^{2}\right) x+b\left(4 a c-b^{2}\right)}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) c b^{3}}{3 \sqrt{c^{3} n^{3}}}+\frac{3 \arctan \left(\frac{2 c\left(4 a c-b^{2}\right) x+b\left(4 a c-b^{2}\right)}{\sqrt{64 a^{3} c^{3}-48 a^{2} b^{2} c^{2}+12 a b^{4} c-b^{6}}}\right) b^{5}}{4 \sqrt{c^{2} b^{2} x^{2}}}
$$

Problem 115: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(c+\frac{a}{x^{2}}+\frac{b}{x}\right)^{3} x} \mathrm{~d} x
$$

Optimal(type 3, 180 leaves, 8 steps):

$$
\begin{gathered}
-\frac{b\left(-7 a c+b^{2}\right) x}{c^{2}\left(-4 a c+b^{2}\right)^{2}}+\frac{x^{4}(b x+2 a)}{2\left(-4 a c+b^{2}\right)\left(c x^{2}+b x+a\right)^{2}}+\frac{x^{2}\left(a\left(-16 a c+b^{2}\right)+b\left(-10 a c+b^{2}\right) x\right)}{2 c\left(-4 a c+b^{2}\right)^{2}\left(c x^{2}+b x+a\right)} \\
+\frac{b\left(30 a^{2} c^{2}-10 a b^{2} c+b^{4}\right) \operatorname{arctanh}\left(\frac{2 c x+b}{\sqrt{-4 a c+b^{2}}}\right)}{c^{3}\left(-4 a c+b^{2}\right)^{5 / 2}}+\frac{\ln \left(c x^{2}+b x+a\right)}{2 c^{3}}
\end{gathered}
$$

Result(type 3, 805 leaves):

$$
\frac{\frac{b\left(25 a^{2} c^{2}-15 a b^{2} c+2 b^{4}\right) x^{3}}{c^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{\left(32 a^{3} c^{3}+11 a^{2} b^{2} c^{2}-19 a b^{4} c+3 b^{6}\right) x^{2}}{2 c^{3}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{a b\left(31 a^{2} c^{2}-22 a b^{2} c+3 b^{4}\right) x}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) c^{3}}+\frac{3 a^{2}\left(8 a^{2} c^{2}-7 a b^{2} c+b^{4}\right)}{2 c^{3}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}}{\left(c x^{2}+b x+a\right)^{2}}
$$

$$
+\frac{\ln \left(c^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(c x^{2}+b x+a\right)\right)}{2 c^{3}}-\frac{30 \arctan \left(\frac{2 c^{3}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) x+c^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) b}{\sqrt{1024 a^{5} c^{9}-1280 a^{4} b^{2} c^{8}+640 a^{3} b^{4} c^{7}-160 a^{2} b^{6} c^{6}+20 a b^{8} c^{5}-b^{10} c^{4}}}\right) a^{2} b c}{\sqrt{1024 a^{5} c^{9}-1280 a^{4} b^{2} c^{8}+640 a^{3} b^{4} c^{7}-160 a^{2} b^{6} c^{6}+20 a b^{8} c^{5}-b^{10} c^{4}}}
$$

$$
+\frac{10 \arctan \left(\frac{2 c^{3}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) x+c^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) b}{\sqrt{1024 a^{5} c^{9}-1280 a^{4} b^{2} c^{8}+640 a^{3} b^{4} c^{7}-160 a^{2} b^{6} c^{6}+20 a b^{8} c^{5}-b^{10} c^{4}}}\right) a b^{3}}{\sqrt{1024 a^{5} c^{9}-1280 a^{4} b^{2} c^{8}+640 a^{3} b^{4} c^{7}-160 a^{2} b^{6} c^{6}+20 a b^{8} c^{5}-b^{10} c^{4}}}
$$

$$
-\frac{\arctan \left(\frac{2 c^{3}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) x+c^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) b}{\sqrt{1024 a^{5} c^{9}-1280 a^{4} b^{2} c^{8}+640 a^{3} b^{4} c^{7}-160 a^{2} b^{6} c^{6}+20 a b^{8} c^{5}-b^{10} c^{4}}}\right) b^{5}}{\sqrt{1024 a^{5} c^{9}-1280 a^{4} b^{2} c^{8}+640 a^{3} b^{4} c^{7}-160 a^{2} b^{6} c^{6}+20 a b^{8} c^{5}-b^{10} c^{4} c}}
$$

Problem 116: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(c+\frac{a}{x^{2}}+\frac{b}{x}\right)^{3} x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 99 leaves, 5 steps):

$$
-\frac{x^{3}(2 c x+b)}{2\left(-4 a c+b^{2}\right)\left(c x^{2}+b x+a\right)^{2}}+\frac{3 b x(b x+2 a)}{2\left(-4 a c+b^{2}\right)^{2}\left(c x^{2}+b x+a\right)}+\frac{6 a b \operatorname{arctanh}\left(\frac{2 c x+b}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{5 / 2}}
$$

Result(type 3, 222 leaves):
$-\frac{3 a b c x^{3}}{16 a^{2} c^{2}-8 a b^{2} c+b^{4}}-\frac{\left(16 a^{2} c^{2}+a b^{2} c+b^{4}\right) x^{2}}{2 c\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{\left(5 a c+b^{2}\right) a b x}{c\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{a^{2}\left(8 a c+b^{2}\right)}{2 c\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}$

$$
\left(c x^{2}+b x+a\right)^{2}
$$

$$
-\frac{6 a b \arctan \left(\frac{2 c x+b}{\sqrt{4 a c-b^{2}}}\right)}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) \sqrt{4 a c-b^{2}}}
$$

Problem 119: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(c+\frac{a}{x^{2}}+\frac{b}{x}\right)^{3} x^{8}} \mathrm{~d} x
$$

Optimal(type 3, 229 leaves, 9 steps):

$$
\begin{array}{r}
-\frac{3\left(-5 a c+b^{2}\right)\left(-2 a c+b^{2}\right)}{a^{3}\left(-4 a c+b^{2}\right)^{2} x}+\frac{b c x-2 a c+b^{2}}{2 a\left(-4 a c+b^{2}\right) x\left(c x^{2}+b x+a\right)^{2}}+\frac{3 b^{4}-20 a b^{2} c+20 a^{2} c^{2}+3 b c\left(-6 a c+b^{2}\right) x}{2 a^{2}\left(-4 a c+b^{2}\right)^{2} x\left(c x^{2}+b x+a\right)} \\
-\frac{3\left(-20 a^{3} c^{3}+30 a^{2} b^{2} c^{2}-10 a b^{4} c+b^{6}\right) \operatorname{arctanh}\left(\frac{2 c x+b}{\sqrt{-4 a c+b^{2}}}\right)}{a^{4}\left(-4 a c+b^{2}\right)^{5 / 2}}-\frac{3 b \ln (x)}{a^{4}}+\frac{3 b \ln \left(c x^{2}+b x+a\right)}{2 a^{4}}
\end{array}
$$

Result(type 3, 1437 leaves):

$$
\begin{aligned}
& -\frac{1}{a^{3} x}-\frac{3 b \ln (x)}{a^{4}}-\frac{14 c^{4} x^{3}}{a\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{13 c^{3} x^{3} b^{2}}{a^{2}\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
& -\frac{2 c^{2} x^{3} b^{4}}{a^{3}\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{37 c^{3} b x^{2}}{a\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}+\frac{55 c^{2} b^{3} x^{2}}{2 a^{2}\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
& -\frac{4 c b^{5} x^{2}}{a^{3}\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{18 x c^{3}}{\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{7 x b^{2} c^{2}}{a\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
& +\frac{12 x b^{4} c}{a^{2}\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{2 x b^{6}}{a^{3}\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{29 b c^{2}}{\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
& +\frac{18 b^{3} c}{a\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{5 b^{5}}{2 a^{2}\left(c x^{2}+b x+a\right)^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
& +\frac{24 c^{2} \ln \left(\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(c x^{2}+b x+a\right)\right) b}{a^{2}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{12 c \ln \left(\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(c x^{2}+b x+a\right)\right) b^{3}}{a^{3}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)} \\
& +\frac{3 \ln \left(\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(c x^{2}+b x+a\right)\right) b^{5}}{2 a^{4}\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}-\frac{60 \arctan \left(\frac{2 c\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) x+b\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}{\sqrt{1024 c^{5} a^{5}-1280 c^{4} b^{2} a^{4}+640 c^{3} b^{4} a^{3}-160 c^{2} b^{6} a^{2}+20 c b^{8} a-b^{10}}}\right) c^{3}}{a \sqrt{1024 c^{5} a^{5}-1280 c^{4} b^{2} a^{4}+640 c^{3} b^{4} a^{3}-160 c^{2} b^{6} a^{2}+20 c b^{8} a-b^{10}}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{90 \arctan \left(\frac{2 c\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) x+b\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}{\sqrt{1024 c^{5} a^{5}-1280 c^{4} b^{2} a^{4}+640 c^{3} b^{4} a^{3}-160 c^{2} b^{6} a^{2}+20 c b^{8} a-b^{10}}}\right) b^{2} c^{2}}{a^{2} \sqrt{1024 c^{5} a^{5}-1280 c^{4} b^{2} a^{4}+640 c^{3} b^{4} a^{3}-160 c^{2} b^{6} a^{2}+20 c b^{8} a-b^{10}}} \\
& -\frac{30 \arctan \left(\frac{2 c\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) x+b\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}{\sqrt{1024 c^{5} a^{5}-1280 c^{4} b^{2} a^{4}+640 c^{3} b^{4} a^{3}-160 c^{2} b^{6} a^{2}+20 c b^{8} a-b^{10}}}\right) b^{4} c}{a^{3} \sqrt{1024 c^{5} a^{5}-1280 c^{4} b^{2} a^{4}+640 c^{3} b^{4} a^{3}-160 c^{2} b^{6} a^{2}+20 c b^{8} a-b^{10}}} \\
& +\frac{3 \arctan \left(\frac{2 c\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) x+b\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)}{\sqrt{1024 c^{5} a^{5}-1280 c^{4} b^{2} a^{4}+640 c^{3} b^{4} a^{3}-160 c^{2} b^{6} a^{2}+20 c b^{8} a-b^{10}}}\right) b^{6}}{a^{4} \sqrt{1024 c^{5} a^{5}-1280 c^{4} b^{2} a^{4}+640 c^{3} b^{4} a^{3}-160 c^{2} b^{6} a^{2}+20 c b^{8} a-b^{10}}}
\end{aligned}
$$

Problem 130: Unable to integrate problem.

$$
\int\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}(d x)^{m} \mathrm{~d} x
$$

Optimal(type 5, 73 leaves, 4 steps):

$$
\frac{\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p} x(d x)^{m} \text { hypergeom }\left([-2 p, 3+3 m],[4+3 m],-\frac{b x^{1 / 3}}{a}\right)}{(1+m)\left(1+\frac{b x^{1 / 3}}{a}\right)^{2 p}}
$$

Result(type 8, 28 leaves):

$$
\int\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}(d x)^{m} \mathrm{~d} x
$$

Problem 131: Unable to integrate problem.

$$
\int\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p} x \mathrm{~d} x
$$

Optimal(type 3, 275 leaves, 4 steps):

$$
\begin{aligned}
&-\frac{3 a^{6}\left(1+\frac{b x^{1 / 3}}{a}\right)\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}}{b^{6}(1+2 p)}+\frac{15 a^{6}\left(1+\frac{b x^{1 / 3}}{a}\right)^{2}\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2} / 3\right)^{p}}{2 b^{6}(1+p)} \\
&- \frac{30 a^{6}\left(1+\frac{b x^{1 / 3}}{a}\right)^{3}\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}}{b^{6}(3+2 p)}+\frac{15 a^{6}\left(1+\frac{b x^{1 / 3}}{a}\right)^{4}\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}}{b^{6}(2+p)} \\
&-\frac{15 a^{6}\left(1+\frac{b x^{1 / 3}}{a}\right)^{5}\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}}{b^{6}(5+2 p)}+\frac{3 a^{6}\left(1+\frac{b x^{1 / 3}}{a}\right)^{6}\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}}{2 b^{6}(3+p)}
\end{aligned}
$$

Result(type 8, 24 leaves):

$$
\int\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p} x \mathrm{~d} x
$$

Problem 132: Unable to integrate problem.

$$
\int \frac{\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}}{x} \mathrm{~d} x
$$

Optimal(type 5, 63 leaves, 3 steps):

$$
-\frac{3\left(1+\frac{b x^{1 / 3}}{a}\right)\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p} \text { hypergeom }\left([1,1+2 p],[2+2 p], 1+\frac{b x^{1 / 3}}{a}\right)}{1+2 p}
$$

Result(type 8, 26 leaves):

$$
\int \frac{\left(a^{2}+2 a b x^{1 / 3}+b^{2} x^{2 / 3}\right)^{p}}{x} \mathrm{~d} x
$$

Problem 137: Result is not expressed in closed-form.

$$
\int \frac{x^{-1-\frac{n}{4}}}{b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 3, 195 leaves, 14 steps):
$-\frac{4}{5 b n x^{\frac{5 n}{4}}}+\frac{4 c}{b^{2} n x^{\frac{n}{4}}}+\frac{\left.c^{5 / 4} \ln \left(-\frac{b^{1 / 4} c^{1 / 4} \sqrt{2}}{x^{\frac{n}{4}}}+\frac{\sqrt{b}}{x^{\frac{n}{2}}}+\sqrt{c}\right) \sqrt{2}\right)}{2 b^{9 / 4} n}-\frac{c^{5 / 4} \ln \left(\frac{b^{1 / 4} c^{1 / 4} \sqrt{2}}{x^{\frac{n}{4}}}+\frac{\sqrt{b}}{x^{\frac{n}{2}}}+\sqrt{c}\right) \sqrt{2}}{2 b^{9 / 4} n}$

$$
+\frac{c^{5 / 4} \arctan \left(1-\frac{b^{1 / 4} \sqrt{2}}{c^{1 / 4} x^{\frac{n}{4}}}\right) \sqrt{2}}{b^{9 / 4} n}-\frac{c^{5 / 4} \arctan \left(1+\frac{b^{1 / 4} \sqrt{2}}{c^{1 / 4} x^{\frac{n}{4}}}\right) \sqrt{2}}{b^{9 / 4} n}
$$

Result(type 7, 72 leaves):

$$
\frac{4 c}{b^{2} n x^{\frac{n}{4}}}-\frac{4}{5 b n\left(x^{\frac{n}{4}}\right)^{5}}+\left(\sum_{-R=\operatorname{RootOf}\left(b^{9} n^{4} Z^{4}+c^{5}\right)} R \ln \left(x^{\frac{n}{4}}+\frac{b^{7} n^{3} R^{3}}{c^{4}}\right)\right)
$$

Problem 142: Unable to integrate problem.

Optimal(type 5, 62 leaves, 2 steps):

$$
\frac{x^{3}\left(a+b x^{n}\right) \text { hypergeom }\left(\left[1, \frac{3}{n}\right],\left[\frac{3+n}{n}\right],-\frac{b x^{n}}{a}\right)}{3 a \sqrt{a^{2}+2 a b x^{n}+b^{2} x^{2 n}}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{x^{2}}{\sqrt{a^{2}+2 a b x^{n}+b^{2} x^{2 n}}} d x
$$

Problem 143: Unable to integrate problem.

$$
\int \frac{(d x)^{m}}{\left(a^{2}+2 a b x^{n}+b^{2} x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 76 leaves, 2 steps):

$$
\frac{(d x)^{1+m}\left(a+b x^{n}\right) \text { hypergeom }\left(\left[3, \frac{1+m}{n}\right],\left[\frac{1+m+n}{n}\right],-\frac{b x^{n}}{a}\right)}{a^{3} d(1+m) \sqrt{a^{2}+2 a b x^{n}+b^{2} x^{2 n}}}
$$

Result(type 8, 30 leaves):

$$
\int \frac{(d x)^{m}}{\left(a^{2}+2 a b x^{n}+b^{2} x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 145: Unable to integrate problem.

$$
\int \frac{1}{x^{2}\left(a^{2}+2 a b x^{n}+b^{2} x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 5, 62 leaves, 2 steps):

$$
-\frac{\left(a+b x^{n}\right) \text { hypergeom }\left(\left[3,-\frac{1}{n}\right],\left[\frac{-1+n}{n}\right],-\frac{b x^{n}}{a}\right)}{a^{3} x \sqrt{a^{2}+2 a b x^{n}+b^{2} x^{2 n}}}
$$

Result(type 8, 117 leaves):

$$
\frac{\left(2 b n \mathrm{e}^{n \ln (x)}+3 a n+b \mathrm{e}^{n \ln (x)}+a\right) \sqrt{\left(b \mathrm{e}^{n \ln (x)}+a\right)^{2}}}{2 a^{2} n^{2} x\left(b \mathrm{e}^{n \ln (x)}+a\right)^{3}}+\frac{\left(\int \frac{2 n^{2}+3 n+1}{2 a^{2} n^{2} x^{2}\left(b \mathrm{e}^{n \ln (x)}+a\right)} \mathrm{d} x\right) \sqrt{\left(b \mathrm{e}^{n \ln (x)}+a\right)^{2}}}{b \mathrm{e}^{n \ln (x)}+a}
$$

Problem 146: Unable to integrate problem.

$$
\int(d x)^{-1-2 n(1+p)}\left(a^{2}+2 a b x^{n}+b^{2} x^{2 n}\right)^{p} \mathrm{~d} x
$$

Optimal(type 3, 119 leaves, 3 steps):

$$
-\frac{\left(a+b x^{n}\right)\left(a^{2}+2 a b x^{n}+b^{2} x^{2 n}\right)^{p}}{a d n(1+2 p)(d x)^{2 n(1+p)}}+\frac{\left(a^{2}+2 a b x^{n}+b^{2} x^{2 n}\right)^{1+p}}{2 a^{2} d n(1+p)(1+2 p)(d x)^{2 n(1+p)}}
$$

Result (type 8, 37 leaves):

$$
\int(d x)^{-1-2 n(1+p)}\left(a^{2}+2 a b x^{n}+b^{2} x^{2 n}\right)^{p} \mathrm{~d} x
$$

Problem 147: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{-1-n}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 3, 92 leaves, 8 steps):

$$
-\frac{1}{a n x^{n}}-\frac{b \ln (x)}{a^{2}}+\frac{b \ln \left(a+b x^{n}+c x^{2 n}\right)}{2 a^{2} n}-\frac{\left(-2 a c+b^{2}\right) \operatorname{arctanh}\left(\frac{b+2 c x^{n}}{\sqrt{-4 a c+b^{2}}}\right)}{a^{2} n \sqrt{-4 a c+b^{2}}}
$$

Result(type 3, 657 leaves):

$$
\begin{aligned}
& \left.-\frac{1}{a n x^{n}}-\frac{4 n^{2} \ln (x) a b c}{4 a^{3} c n^{2}-a^{2} b^{2} n^{2}}+\frac{n^{2} \ln (x) b^{3}}{4 a^{3} c n^{2}-a^{2} b^{2} n^{2}}+\frac{2 \ln \left(x^{n}-\frac{-2 a b c+b^{3}+\sqrt{-16 a^{3} c^{3}+20 a^{2} b^{2} c^{2}-8 a b^{4} c+b^{6}}}{2 c\left(2 a c-b^{2}\right)}\right) b c}{a\left(4 a c-b^{2}\right) n}\right) b^{3} \\
& \left.-\frac{\ln \left(x^{n}-\frac{-2 a b c+b^{3}+\sqrt{-16 a^{3} c^{3}+20 a^{2} b^{2} c^{2}-8 a b^{4} c+b^{6}}}{2 c\left(2 a c-b^{2}\right)}\right)}{2 a^{2}\left(4 a c-b^{2}\right) n}\right) \sqrt{-16 a^{3} c^{3}+20 a^{2} b^{2} c^{2}-8 a b^{4} c+b^{6}} \\
& \\
& \left.+\frac{\ln \left(x^{n}-\frac{-2 a b c+b^{3}+\sqrt{-16 a^{3} c^{3}+20 a^{2} b^{2} c^{2}-8 a b^{4} c+b^{6}}}{2 c\left(2 a c-b^{2}\right)}\right)}{2 a^{2}\left(4 a c-b^{2}\right) n}\right) \\
& \left.\quad+\frac{2 \ln \left(x^{n}+\frac{2 a b c-b^{3}+\sqrt{-16 a^{3} c^{3}+20 a^{2} b^{2} c^{2}-8 a b^{4} c+b^{6}}}{2 c\left(2 a c-b^{2}\right)}\right) \ln \left(x^{n}+\frac{2 a b c-b^{3}+\sqrt{-16 a^{3} c^{3}+20 a^{2} b^{2} c^{2}-8 a b^{4} c+b^{6}}}{2\left(4 a c-b^{2}\right) n}\right) b^{3}}{2 a^{2}}\right) \\
& -
\end{aligned}
$$

Problem 148: Result is not expressed in closed-form.

$$
\int \frac{x^{-1+\frac{n}{4}}}{a+b x^{n}+c x^{2 n}} d x
$$

Optimal(type 3, 273 leaves, 8 steps):

$$
\begin{aligned}
& \frac{22^{3 / 4} c^{3 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} x^{\frac{n}{4}}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)}{n\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4} \sqrt{-4 a c+b^{2}}}+\frac{22^{3 / 4} c^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x^{\frac{n}{4}}}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)}{n\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4} \sqrt{-4 a c+b^{2}}}-\frac{22^{3 / 4} c^{3 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} x^{\frac{n}{4}}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)}{n \sqrt{-4 a c+b^{2}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}} \\
& \quad 22^{3 / 4 c^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x^{\frac{n}{4}}}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)} \\
& \quad-\frac{2 \sqrt{-4 a c+b^{2}}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}{n \sqrt{-4}}
\end{aligned}
$$

Result(type 7, 279 leaves):
$_^{R}=\operatorname{RootOf}\left(\left(256 a^{7} c^{4} n^{8}-256 a^{6} b^{2} c^{3} n^{8}+96 a^{5} b^{4} c^{2} n^{8}-16 a^{4} b^{6} c n^{8}+a^{3} b^{8} n^{8}\right) _^{8}+\left(-48 a^{3} b c^{3} n^{4}+40 a^{2} b^{3} c^{2} n^{4}-11 a b^{5} c n^{4}+b^{7} n^{4}\right) Z^{4}+c^{3}\right) \quad-R \ln \left(x^{\frac{n}{4}}+\left(\frac{16 n^{5} b a^{5} c^{2}}{a c^{2}-b^{2} c}\right.\right.$

$$
\left.\left.-\frac{8 n^{5} b^{3} a^{4} c}{a c^{2}-b^{2} c}+\frac{n^{5} b^{5} a^{3}}{a c^{2}-b^{2} c}\right)-R^{5}+\left(\frac{2 n a^{2} c^{2}}{a c^{2}-b^{2} c}-\frac{4 n a b^{2} c}{a c^{2}-b^{2} c}+\frac{n b^{4}}{a c^{2}-b^{2} c}\right)-R\right)
$$

Problem 149: Result is not expressed in closed-form.

$$
\int \frac{x^{-1+\frac{n}{3}}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 3, 465 leaves, 14 steps):

$$
\begin{aligned}
& \frac{2^{2 / 3} c^{2 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x^{\frac{n}{3}}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)}{n\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \sqrt{-4 a c+b^{2}}} \\
& \quad-\frac{c^{2 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{\frac{2 n}{3}}-2^{1 / 3} c^{1 / 3} x^{\frac{n}{3}}\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right) 2^{2 / 3}}{2 n\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \sqrt{-4 a c+b^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{2^{2 / 3} c^{2 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x^{\frac{n}{3}}}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{n\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \sqrt{-4 a c+b^{2}}}-\frac{2^{2 / 3} c^{2 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x^{\frac{n}{3}}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)}{n \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{c^{2 / 3} \ln \left(2^{2 / 3} c^{2} / 3 x^{\frac{2 n}{3}}-2^{1 / 3} c^{1 / 3} x^{\frac{n}{3}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right) 2^{2 / 3}}{2 n \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{2^{2 / 3} c^{2 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x^{\frac{n}{3}}}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{n \sqrt{-4 a c+b^{2}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
\end{aligned}
$$

Result(type 7, 259 leaves):
$__{-}=\operatorname{Root} \operatorname{Of}\left(\left(64 a^{5} c^{3} n^{6}-48 a^{4} b^{2} c^{2} n^{6}+12 a^{3} b^{4} c n^{6}-a^{2} b^{6} n^{6}\right) Z^{6}+\left(16 a^{2} b c^{2} n^{3}-8 a b^{3} c n^{3}+b^{5} n^{3}\right) Z^{3}+c^{2}\right) \quad R \ln \left(x^{\frac{n}{3}}+\left(-\frac{16 n^{4} b a^{4} c^{2}}{2 a c^{2}-b^{2} c}+\frac{8 n^{4} b^{3} a^{3} c}{2 a c^{2}-b^{2} c}\right.\right.$

$$
\left.\left.-\frac{n^{4} b^{5} a^{2}}{2 a c^{2}-b^{2} c}\right)-R^{4}+\left(\frac{4 n a^{2} c^{2}}{2 a c^{2}-b^{2} c}-\frac{5 n a b^{2} c}{2 a c^{2}-b^{2} c}+\frac{n b^{4}}{2 a c^{2}-b^{2} c}\right)-R\right)
$$

Problem 150: Result is not expressed in closed-form.

$$
\int \frac{x^{-1+\frac{n}{2}}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 3, 129 leaves, 4 steps):

$$
\frac{2 \arctan \left(\frac{x^{\frac{n}{2}} \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{2} \sqrt{c}}{n \sqrt{-4 a c+b^{2}} \sqrt{b-\sqrt{-4 a c+b^{2}}}}-\frac{2 \arctan \left(\frac{x^{\frac{n}{2}} \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{2} \sqrt{c}}{n \sqrt{-4 a c+b^{2}} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
$$

Result(type 7, 113 leaves):

Problem 151: Result is not expressed in closed-form.

$$
\int \frac{x^{-1-\frac{n}{3}}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 3, 570 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{3}{a n x^{\frac{n}{3}}}+\frac{\ln \left(\frac{2^{1 / 3} a^{1 / 3}}{x^{\frac{n}{3}}}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{2 a^{4 / 3} n\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\frac{\ln \left(\frac{2^{2 / 3} a^{2 / 3}}{x^{\frac{2 n}{3}}}-\frac{2^{1 / 3} a^{1 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}{x^{\frac{n}{3}}}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{4 a^{4 / 3} n\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\frac{\left.\arctan \left(\frac{22^{1 / 3} a^{1 / 3}}{x^{\frac{n}{3}}\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}\right) \sqrt{3}\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{2 a^{4 / 3} n\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{\ln \left(\frac{2^{1 / 3} a^{1 / 3}}{x^{\frac{n}{3}}}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{2 a^{4 / 3} n\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\frac{\ln \left(\frac{2^{2 / 3} a^{2 / 3}}{x^{\frac{2 n}{3}}}-\frac{2^{1 / 3} a^{1 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}{x^{\frac{n}{3}}}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{4 a^{4 / 3} n\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} a^{1 / 3}}{x^{\frac{n}{3}}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{2 a^{4 / 3} n\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
\end{aligned}
$$

Result(type 7, 533 leaves):

$$
\begin{aligned}
& \left.-\frac{64 n^{5} a^{8} c^{4}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}+\frac{112 n^{5} b^{2} a^{7} c^{3}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}-\frac{60 n^{5} b^{4} a^{6} c^{2}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}+\frac{13 n^{5} b^{6} a^{5} c}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}-\frac{n^{5} b^{8} a^{4}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}\right)-R^{5} \\
& \left.+\left(\frac{28 c^{4} a^{4} b n^{2}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}-\frac{63 c^{3} a^{3} b^{3} n^{2}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}+\frac{42 c^{2} a^{2} b^{5} n^{2}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}-\frac{11 c a b^{7} n^{2}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}+\frac{n^{2} b^{9}}{2 a^{2} c^{5}-4 b^{2} a c^{4}+b^{4} c^{3}}\right)-R^{2}\right)
\end{aligned}
$$

Problem 152: Result is not expressed in closed-form.

$$
\int \frac{x^{-1-\frac{n}{4}}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 3, 344 leaves, 10 steps):
$-\frac{4}{a n x^{\frac{n}{4}}}-\frac{2^{3 / 4} \arctan \left(\frac{2^{1 / 4} a^{1 / 4}}{x^{\frac{n}{4}}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{a^{5 / 4} n\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}-\frac{2^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} a^{1 / 4}}{x^{\frac{n}{4}}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{-2 a c+b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{a^{5 / 4} n\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}$

$$
-\frac{2^{3 / 4} \arctan \left(\frac{2^{1 / 4} a^{1 / 4}}{x^{\frac{n}{4}}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{a^{5 / 4} n\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}-\frac{2^{3 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} a^{1 / 4}}{x^{\frac{n}{4}}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b+\frac{2 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{a^{5 / 4} n\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}
$$

Result(type 7, 629 leaves):
$-\frac{4}{a n x^{\frac{n}{4}}}+$
$_^{R=\operatorname{RootOf}\left(\left(256 a^{9} c^{4} n^{8}-256 a^{8} b^{2} c^{3} n^{8}+96 a^{7} b^{4} c^{2} n^{8}-16 a^{6} b^{6} c n^{8}+a^{5} b^{8} n^{8}\right) _^{8}+\left(80 a^{4} b c^{4} n^{4}-120 a^{3} b^{3} c^{3} n^{4}+61 a^{2} b^{5} c^{2} n^{4}-13 a b^{7} c n^{4}+b^{9} n^{4}\right) Z^{4}+c^{5}\right)}{ }^{-R \ln \left(x^{\frac{n}{4}}+\left(16 b^{7}\right.\right.}$
$-\frac{128 n^{7} a^{10} c^{5}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}+\frac{352 n^{7} b^{2} a^{9} c^{4}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}-\frac{280 n^{7} b^{4} a^{8} c^{3}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}+\frac{98 n^{7} b^{6} a^{7} c^{2}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}-\frac{16 n^{7} b^{8} a^{6} c}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}$
$\left.+\frac{n^{7} b^{10} a^{5}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}\right)-R^{7}+\left(-\frac{36 n^{3} b a^{5} c^{5}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}+\frac{129 n^{3} b^{3} a^{4} c^{4}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}-\frac{138 n^{3} b^{5} a^{3} c^{3}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}+\frac{63 n^{3} b^{7} a^{2} c^{2}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}\right.$
$\left.\left.\left.-\frac{13 n^{3} b^{9} a c}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}+\frac{n^{3} b^{11}}{a^{2} c^{6}-3 a b^{2} c^{5}+b^{4} c^{4}}\right)-R^{3}\right)\right)$

Problem 153: Unable to integrate problem.

$$
\int \frac{1}{x^{3}\left(a+b x^{n}+c x^{2 n}\right)} d x
$$

Optimal(type 5, 130 leaves, 3 steps):

$$
\frac{c \text { hypergeom }\left(\left[1,-\frac{2}{n}\right],\left[\frac{-2+n}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)}{x^{2}\left(b^{2}-4 a c-b \sqrt{-4 a c+b^{2}}\right)}+\frac{c \text { hypergeom }\left(\left[1,-\frac{2}{n}\right],\left[\frac{-2+n}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{x^{2}\left(b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}\right)}
$$

Result(type 8, 22 leaves):

$$
\int \frac{1}{x^{3}\left(a+b x^{n}+c x^{2 n}\right)} \mathrm{d} x
$$

Problem 156: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 131 leaves, 2 steps):

$$
\frac{x^{3} \text { AppellF1 }\left(\frac{3}{n}, \frac{3}{2}, \frac{3}{2}, \frac{3+n}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{3 a \sqrt{a+b x^{n}+c x^{2 n}}}}{3+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{x^{2}}{\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 157: Unable to integrate problem.

$$
\int \frac{1}{x\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 88 leaves, 5 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{2 a+b x^{n}}{2 \sqrt{a} \sqrt{a+b x^{n}+c x^{2 n}}}\right)}{a^{3 / 2} n}+\frac{2\left(b^{2}-2 a c+b c x^{n}\right)}{a\left(-4 a c+b^{2}\right) n \sqrt{a+b x^{n}+c x^{2 n}}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{1}{x\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 158: Result more than twice size of optimal antiderivative.

$$
\int(d x)^{m}\left(a+b x^{n}+c x^{2 n}\right) \mathrm{d} x
$$

Optimal(type 3, 58 leaves, 6 steps):

$$
\frac{b x^{1+n}(d x)^{m}}{1+m+n}+\frac{c x^{1+2 n}(d x)^{m}}{1+m+2 n}+\frac{a(d x)^{1+m}}{d(1+m)}
$$

Result(type 3, 204 leaves):

$$
\begin{aligned}
& \frac{1}{(1+m)(1+m+n)(1+m+2 n)}\left(x \left(c m^{2}\left(x^{n}\right)^{2}+c m n\left(x^{n}\right)^{2}+b m^{2} x^{n}+2 b m n x^{n}+2 m c\left(x^{n}\right)^{2}+c\left(x^{n}\right)^{2} n+a m^{2}+3 a m n+2 a n^{2}+2 x^{n} b m\right.\right. \\
& \left.\quad+2 b x^{n} n+c\left(x^{n}\right)^{2}+2 a m+3 a n+b x^{n}+a\right) \mathrm{e}^{\left.-\frac{m\left(\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} d x)^{3}-\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} d x)^{2} \operatorname{csgn}(\mathrm{I} d)-\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} d x)^{2} \operatorname{csgn}(\mathrm{I} x)+\mathrm{I} \pi \operatorname{csgn}(\mathrm{I} d x) \operatorname{csgn}(\mathrm{I} d) \operatorname{csgn}(\mathrm{I} x)-2 \ln (x)-2 \ln (d)\right)}{2}\right)}
\end{aligned}
$$

Problem 159: Unable to integrate problem.

$$
\int \frac{(d x)^{m}}{\left(a+b x^{n}+c x^{2 n}\right)^{3}} d x
$$

Optimal(type 5, 595 leaves, 6 steps):
$\frac{(d x)^{1+m}\left(b^{2}-2 a c+b c x^{n}\right)}{2 a\left(-4 a c+b^{2}\right) d n\left(a+b x^{n}+c x^{2 n}\right)^{2}}$

$$
\begin{aligned}
& -\frac{(d x)^{1+m}\left(4 a^{2} c^{2}(1+m-4 n)-5 a b^{2} c(1+m-3 n)+b^{4}(1+m-2 n)-b c\left(2 a c(2+2 m-7 n)-b^{2}(1+m-2 n)\right) x^{n}\right)}{2 a^{2}\left(-4 a c+b^{2}\right)^{2} d n^{2}\left(a+b x^{n}+c x^{2 n}\right)} \\
& -\frac{1}{2 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2} d(1+m) n^{2}\left(b-\sqrt{-4 a c+b^{2}}\right)}\left(c (d x) ^ { 1 + m } \operatorname { h y p e r g e o m } ([1 , \frac { 1 + m } { n }] , [\frac { 1 + m + n } { n }] , - \frac { 2 c x ^ { n } } { b - \sqrt { - 4 a c + b ^ { 2 } } }) \left(-b^{4}\left(1+m^{2}\right.\right.\right. \\
& \left.+m(2-3 n)-3 n+2 n^{2}\right)+6 a b^{2} c\left(1+m^{2}+m(2-4 n)-4 n+3 n^{2}\right)-8 a^{2} c^{2}\left(1+m^{2}+m(2-6 n)-6 n+8 n^{2}\right)+b(2 a c(2+2 m-7 n) \\
& \left.\left.\left.-b^{2}(1+m-2 n)\right)(1+m-n) \sqrt{-4 a c+b^{2}}\right)\right)-\frac{1}{2 a^{2}\left(-4 a c+b^{2}\right)^{5 / 2} d(1+m) n^{2}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(c(d x)^{1+m} \text { hypergeom }([1,\right. \\
& \left.\left.\frac{1+m}{n}\right],\left[\frac{1+m+n}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)\left(b^{4}\left(1+m^{2}+m(2-3 n)-3 n+2 n^{2}\right)-6 a b^{2} c\left(1+m^{2}+m(2-4 n)-4 n+3 n^{2}\right)+8 a^{2} c^{2}\left(1+m^{2}\right.\right. \\
& \left.\left.\left.+m(2-6 n)-6 n+8 n^{2}\right)+b\left(2 a c(2+2 m-7 n)-b^{2}(1+m-2 n)\right)(1+m-n) \sqrt{-4 a c+b^{2}}\right)\right)
\end{aligned}
$$

Result(type 8, 24 leaves):

$$
\int \frac{(d x)^{m}}{\left(a+b x^{n}+c x^{2 n}\right)^{3}} \mathrm{~d} x
$$

Problem 160: Unable to integrate problem.

$$
\int \frac{(d x)^{m}}{\sqrt{a+b x^{n}+c x^{2 n}}} \mathrm{~d} x
$$

Optimal(type 6, 142 leaves, 2 steps):

$$
\frac{(d x)^{1+m} \text { AppellF1 }\left(\frac{1+m}{n}, \frac{1}{2}, \frac{1}{2}, \frac{1+m+n}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}} \sqrt{1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}}}}{d(1+m) \sqrt{a+b x^{n}+c x^{2 n}}}
$$

Result(type 8, 24 leaves):

$$
\int \frac{(d x)^{m}}{\sqrt{a+b x^{n}+c x^{2 n}}} \mathrm{~d} x
$$

Problem 161: Unable to integrate problem.

$$
\int \frac{(d x)^{m}}{\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 6, 145 leaves, 2 steps):

$$
\frac{(d x)^{1+m} \text { AppellF1 }\left(\frac{1+m}{n}, \frac{3}{2}, \frac{3}{2}, \frac{1+m+n}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}} \sqrt{1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}}} \underset{a d(1+m) \sqrt{a+b x^{n}+c x^{2 n}}}{ }}{\frac{1}{1+\frac{1}{2}}}
$$

Result(type 8, 24 leaves):

$$
\int \frac{(d x)^{m}}{\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 162: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{3}\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{2} \mathrm{~d} x
$$

Optimal(type 1, 79 leaves, 4 steps):

$$
\frac{a^{2}(e x+d)^{4}}{4 e}+\frac{a b(e x+d)^{6}}{3 e}+\frac{\left(2 a c+b^{2}\right)(e x+d)^{8}}{8 e}+\frac{b c(e x+d)^{10}}{5 e}+\frac{c^{2}(e x+d)^{12}}{12 e}
$$

Result(type 1, 1313 leaves):
$\frac{e^{11} c^{2} x^{12}}{12}+d e^{10} c^{2} x^{11}+\frac{\left(27 d^{2} e^{9} c^{2}+e^{3}\left(2\left(6 c d^{2} e^{2}+b e^{2}\right) c e^{4}+16 c^{2} d^{2} e^{6}\right)\right) x^{10}}{10}$

$$
+\frac{\left(25 d^{3} c^{2} e^{8}+3 d e^{2}\left(2\left(6 c d^{2} e^{2}+b e^{2}\right) c e^{4}+16 c^{2} d^{2} e^{6}\right)+e^{3}\left(2\left(4 c d^{3} e+2 b d e\right) c e^{4}+8\left(6 c d^{2} e^{2}+b e^{2}\right) c d e^{3}\right)\right) x^{9}}{9}+\frac{1}{8}\left(\left(8 d^{4} c^{2} e^{7}\right.\right.
$$

$$
\begin{aligned}
& +3 d^{2} e\left(2\left(6 c d^{2} e^{2}+b e^{2}\right) c e^{4}+16 c^{2} d^{2} e^{6}\right)+3 d e^{2}\left(2\left(4 c d^{3} e+2 b d e\right) c e^{4}+8\left(6 c d^{2} e^{2}+b e^{2}\right) c d e^{3}\right)+e^{3}\left(2\left(c d^{4}+b d^{2}+a\right) c e^{4}+8\left(4 c d^{3} e\right.\right. \\
& \left.\left.\left.+2 b d e) c d e^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right)^{2}\right)\right) x^{8}\right)+\frac{1}{7}\left(\left(d^{3}\left(2\left(6 c d^{2} e^{2}+b e^{2}\right) c e^{4}+16 c^{2} d^{2} e^{6}\right)+3 d^{2} e\left(2\left(4 c d^{3} e+2 b d e\right) c e^{4}+8\left(6 c d^{2} e^{2}\right.\right.\right.\right. \\
& \left.\left.+b e^{2}\right) c d e^{3}\right)+3 d e^{2}\left(2\left(c d^{4}+b d^{2}+a\right) c e^{4}+8\left(4 c d^{3} e+2 b d e\right) c d e^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right)^{2}\right)+e^{3}\left(8\left(c d^{4}+b d^{2}+a\right) c d e^{3}+2\left(4 c d^{3} e\right.\right. \\
& \left.\left.\left.+2 b d e)\left(6 c d^{2} e^{2}+b e^{2}\right)\right)\right) x^{7}\right)+\frac{1}{6}\left(\left(d^{3}\left(2\left(4 c d^{3} e+2 b d e\right) c e^{4}+8\left(6 c d^{2} e^{2}+b e^{2}\right) c d e^{3}\right)+3 d^{2} e\left(2\left(c d^{4}+b d^{2}+a\right) c e^{4}+8\left(4 c d^{3} e\right.\right.\right.\right. \\
& \left.+2 b d e) c d e^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right)^{2}\right)+3 d e^{2}\left(8\left(c d^{4}+b d^{2}+a\right) c d e^{3}+2\left(4 c d^{3} e+2 b d e\right)\left(6 c d^{2} e^{2}+b e^{2}\right)\right)+e^{3}\left(2 (c d ^ { 4 } + b d ^ { 2 } + a) \left(6 c d^{2} e^{2}\right.\right. \\
& \left.\left.\left.\left.+b e^{2}\right)+\left(4 c d^{3} e+2 b d e\right)^{2}\right)\right) x^{6}\right)+\frac{1}{5}\left(\left(d^{3}\left(2\left(c d^{4}+b d^{2}+a\right) c e^{4}+8\left(4 c d^{3} e+2 b d e\right) c d e^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right)^{2}\right)+3 d^{2} e\left(8 \left(c d^{4}+b d^{2}\right.\right.\right.\right. \\
& \left.+a) c d e^{3}+2\left(4 c d^{3} e+2 b d e\right)\left(6 c d^{2} e^{2}+b e^{2}\right)\right)+3 d e^{2}\left(2\left(c d^{4}+b d^{2}+a\right)\left(6 c d^{2} e^{2}+b e^{2}\right)+\left(4 c d^{3} e+2 b d e\right)^{2}\right)+2 e^{3}\left(c d^{4}+b d^{2}\right. \\
& \left.\left.+a)\left(4 c d^{3} e+2 b d e\right)\right) x^{5}\right)+\frac{1}{4}\left(\left(\left(d^{3}\left(8\left(c d^{4}+b d^{2}+a\right) c d e^{3}+2\left(4 c d^{3} e+2 b d e\right)\left(6 c d^{2} e^{2}+b e^{2}\right)\right)+3 d^{2} e\left(2 (c d ^ { 4 } + b d ^ { 2 } + a) \left(6 c d^{2} e^{2}\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.+b e^{2}\right)+\left(4 c d^{3} e+2 b d e\right)^{2}\right)+6 d e^{2}\left(c d^{4}+b d^{2}+a\right)\left(4 c d^{3} e+2 b d e\right)+e^{3}\left(c d^{4}+b d^{2}+a\right)^{2}\right) x^{4}\right) \\
& +\frac{\left(d^{3}\left(2\left(c d^{4}+b d^{2}+a\right)\left(6 c d^{2} e^{2}+b e^{2}\right)+\left(4 c d^{3} e+2 b d e\right)^{2}\right)+6 d^{2} e\left(c d^{4}+b d^{2}+a\right)\left(4 c d^{3} e+2 b d e\right)+3 d e^{2}\left(c d^{4}+b d^{2}+a\right)^{2}\right) x^{3}}{3} \\
& +\frac{\left(2 d^{3}\left(c d^{4}+b d^{2}+a\right)\left(4 c d^{3} e+2 b d e\right)+3 d^{2} e\left(c d^{4}+b d^{2}+a\right)^{2}\right) x^{2}}{2}+d^{3}\left(c d^{4}+b d^{2}+a\right)^{2} x
\end{aligned}
$$

Problem 163: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{3}\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{3} \mathrm{~d} x
$$

Optimal(type 1, 124 leaves, 4 steps):
$\frac{a^{3}(e x+d)^{4}}{4 e}+\frac{a^{2} b(e x+d)^{6}}{2 e}+\frac{3 a\left(a c+b^{2}\right)(e x+d)^{8}}{8 e}+\frac{b\left(6 a c+b^{2}\right)(e x+d)^{10}}{10 e}+\frac{c\left(a c+b^{2}\right)(e x+d)^{12}}{4 e}+\frac{3 b c^{2}(e x+d)^{14}}{14 e}$

$$
+\frac{c^{3}(e x+d)^{16}}{16 e}
$$

Result(type ?, 7549 leaves): Display of huge result suppressed!
Problem 164: Result is not expressed in closed-form.

$$
\int \frac{(e x+d)^{3}}{a+b(e x+d)^{2}+c(e x+d)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 73 leaves, 6 steps):

$$
\frac{\ln \left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}{4 c e}+\frac{b \operatorname{arctanh}\left(\frac{b+2 c(e x+d)^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{2 c e \sqrt{-4 a c+b^{2}}}
$$

Result(type 7, 150 leaves):

Problem 165: Result is not expressed in closed-form.

$$
\int \frac{1}{(e x+d)\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)} \mathrm{d} x
$$

Optimal(type 3, 86 leaves, 8 steps):

$$
\frac{\ln (e x+d)}{a e}-\frac{\ln \left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}{4 a e}+\frac{b \operatorname{arctanh}\left(\frac{b+2 c(e x+d)^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{2 a e \sqrt{-4 a c+b^{2}}}
$$

Result(type 7, 183 leaves):
$\frac{\left.\sum_{R=R o o t O f\left(c e^{4} Z^{4}+4 c d e^{3}\right.} Z^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right) Z^{2}+\left(4 c d^{3} e+2 b d e\right) \quad Z^{2}+c d^{4}+b d^{2}+a\right)}{2 a e} \frac{\left(-c e^{3} R^{3}-3 c d e^{2} R^{2}+e\left(-3 c d^{2}-b\right) _R-c d^{3}-b d\right) \ln (x-R)}{2 c e^{3} R^{3}+6 c d e^{2} _R^{2}+6 c d^{2} e_{-} R+2 c d^{3}+b e _R+b d}$

$$
+\frac{\ln (e x+d)}{a e}
$$

Problem 166: Result is not expressed in closed-form.

$$
\int \frac{1}{(e x+d)^{2}\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)} \mathrm{d} x
$$

Optimal(type 3, 159 leaves, 5 steps):

$$
-\frac{1}{a e(e x+d)}-\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(1+\frac{b}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{2 a e \sqrt{b-\sqrt{-4 a c+b^{2}}}}-\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\left.\sqrt{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c}\left(1-\frac{b}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}\right.}{2 a e \sqrt{b+\sqrt{-4 a c+b^{2}}}}
$$

Result(type 7, 167 leaves):

Problem 167: Result is not expressed in closed-form.

$$
\int \frac{(e x+d)^{4}}{\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 227 leaves, 5 steps):
$\frac{(e x+d)\left(2 a+b(e x+d)^{2}\right)}{2\left(-4 a c+b^{2}\right) e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}+\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\left.\sqrt{b-\sqrt{-4 a c+b^{2}}}\right)\left(b+\frac{-4 a c-b^{2}}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}\right.}{4\left(-4 a c+b^{2}\right) e \sqrt{c} \sqrt{b-\sqrt{-4 a c+b^{2}}}}$
$+\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right)\left(b^{2}+4 a c+b \sqrt{-4 a c+b^{2}}\right) \sqrt{2}}{4\left(-4 a c+b^{2}\right)^{3 / 2} e \sqrt{c} \sqrt{b+\sqrt{-4 a c+b^{2}}}}$
Result(type 7, 322 leaves):
$\frac{-\frac{b e^{2} x^{3}}{2\left(4 a c-b^{2}\right)}-\frac{3 d b e x^{2}}{2\left(4 a c-b^{2}\right)}-\frac{\left(3 b d^{2}+2 a\right) x}{2\left(4 a c-b^{2}\right)}-\frac{d\left(b d^{2}+2 a\right)}{2 e\left(4 a c-b^{2}\right)}}{c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a}$
$+\frac{1}{4 e}$
$\left.\begin{array}{c}\sum_{R=\operatorname{RootOf}\left(c e^{4}-Z^{4}+4 c d e^{3} Z^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right) Z^{2}+\left(4 c d^{3} e+2 b d e\right) \quad Z+c d^{4}+b d^{2}+a\right)}^{\left(-R^{2} b e^{2}-2 _R b d e-b d^{2}+2 a\right) \ln \left(x-_{-} R\right)} \\ \left(4 a c-b^{2}\right)\left(2 c e^{3} R^{3}+6 c d e^{2} R^{2}+6 c d^{2} e_{-} R+2 c d^{3}+b e_{-} R+b d\right)\end{array}\right)$

Problem 168: Result is not expressed in closed-form.

$$
\int \frac{(e x+d)^{3}}{\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 91 leaves, 5 steps):

$$
\frac{2 a+b(e x+d)^{2}}{2\left(-4 a c+b^{2}\right) e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}-\frac{b \operatorname{arctanh}\left(\frac{b+2 c(e x+d)^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{3 / 2} e}
$$

Result(type 7, 275 leaves):

$$
\frac{-\frac{b e x^{2}}{2\left(4 a c-b^{2}\right)}-\frac{b d x}{4 a c-b^{2}}-\frac{b d^{2}+2 a}{2 e\left(4 a c-b^{2}\right)}}{c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a}+\frac{1}{2 e}(b)
$$

$__{-} R=\operatorname{RootOf}\left(c e^{4} Z^{4}+4 c d e^{3} _^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right) Z^{2}+\left(4 c d^{3} e+2 b d e\right) \quad Z+c d^{4}+b d^{2}+a\right)$

$$
\left.\left.\frac{\left(-e_{-} R-d\right) \ln \left(x-R_{-} R\right)}{\left(4 a c-b^{2}\right)\left(2 c e^{3} R^{3}+6 c d e^{2} R^{2}+6 c d^{2} e_{-} R+2 c d^{3}+b e_{-} R+b d\right)}\right)\right)
$$

Problem 169: Result is not expressed in closed-form.

$$
\int \frac{(e x+d)^{2}}{\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 213 leaves, 5 steps):

$$
\begin{aligned}
& -\frac{(e x+d)\left(b+2 c(e x+d)^{2}\right)}{2\left(-4 a c+b^{2}\right) e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}+\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\left.\sqrt{b-\sqrt{-4 a c+b^{2}}}\right) \sqrt{c}\left(2 b-\sqrt{-4 a c+b^{2}}\right) \sqrt{2}}\right.}{2\left(-4 a c+b^{2}\right)^{3 / 2} e \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
& -\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(2 b+\sqrt{-4 a c+b^{2}}\right) \sqrt{2}}{2\left(-4 a c+b^{2}\right)^{3 / 2} e \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{aligned}
$$

Result(type 7, 318 leaves):
$\frac{c e^{2} x^{3}}{4 a c-b^{2}}+\frac{3 d c e x^{2}}{4 a c-b^{2}}+\frac{\left(6 c d^{2}+b\right) x}{2\left(4 a c-b^{2}\right)}+\frac{d\left(2 c d^{2}+b\right)}{2 e\left(4 a c-b^{2}\right)}$
$\frac{4 a c-b^{2}+4 a c-b^{2}}{c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a}$
$+\frac{1}{4 e}$
$\sum_{-}=\operatorname{RootOf}\left(c e^{4} _^{4}+4 c d e^{3} Z^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right) Z^{2}+\left(4 c d^{3} e+2 b d e\right) \quad Z+c d^{4}+b d^{2}+a\right)$

$$
\left.\frac{\left(2 R^{2} c e^{2}+4_{-} R c d e+2 c d^{2}-b\right) \ln \left(x-_{-} R\right)}{\left(4 a c-b^{2}\right)\left(2 c e_{-}^{3} R^{3}+6 c d e_{-}^{2} R^{2}+6 c d^{2} e_{-} R+2 c d^{3}+b e_{-} R+b d\right)}\right)
$$

Problem 170: Result is not expressed in closed-form.

$$
\int \frac{e x+d}{\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 92 leaves, 5 steps):

$$
\frac{-b-2 c(e x+d)^{2}}{2\left(-4 a c+b^{2}\right) e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}+\frac{2 c \operatorname{arctanh}\left(\frac{b+2 c(e x+d)^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{\left(-4 a c+b^{2}\right)^{3 / 2} e}
$$

Result(type 7, 269 leaves):

$$
\begin{aligned}
& \frac{\frac{c e x^{2}}{4 a c-b^{2}}+\frac{2 c d x}{4 a c-b^{2}}+\frac{2 c d^{2}+b}{2 e\left(4 a c-b^{2}\right)}}{c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a}+\frac{1}{e}(c(\\
& \sum_{-} R=\operatorname{RootOf}\left(c e^{4} _^{4}+4 c d e^{3} _^{Z^{3}}+\left(6 c d^{2} e^{2}+b e^{2}\right) Z^{2}+\left(4 c d^{3} e+2 b d e\right) _Z+c d^{4}+b d^{2}+a\right) \\
& \left.\left.\frac{\left(e_{-} R+d\right) \ln \left(x_{-} R\right)}{\left(4 a c-b^{2}\right)\left(2 c e^{3} R_{-}^{3}+6 c d e^{2} R^{2}+6 c d^{2} e_{-} R+2 c d^{3}+b e_{-} R+b d\right)}\right)\right)
\end{aligned}
$$

Problem 171: Result is not expressed in closed-form.

$$
\int \frac{(e x+d)^{2}}{\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 319 leaves, 6 steps):

```
\(-\frac{(e x+d)\left(b+2 c(e x+d)^{2}\right)}{4\left(-4 a c+b^{2}\right) e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{2}}+\frac{(e x+d)\left(b\left(8 a c+b^{2}\right)+c\left(20 a c+b^{2}\right)(e x+d)^{2}\right)}{8 a\left(-4 a c+b^{2}\right)^{2} e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}\)
    \(+\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b^{2}+20 a c+\frac{b\left(-52 a c+b^{2}\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{}\)
            \(16 a\left(-4 a c+b^{2}\right)^{2} e \sqrt{b-\sqrt{-4 a c+b^{2}}}\)
    \(+\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b^{2}+20 a c-\frac{b\left(-52 a c+b^{2}\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{}\)
    \(16 a\left(-4 a c+b^{2}\right)^{2} e \sqrt{b+\sqrt{-4 a c+b^{2}}}\)
```

Result(type 7, 884 leaves):

$$
\begin{aligned}
& \left(\frac{c^{2} e^{6}\left(20 a c+b^{2}\right) x^{7}}{8\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a}+\frac{7 c^{2} d e^{5}\left(20 a c+b^{2}\right) x^{6}}{8\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a}+\frac{\left(420 a c^{2} d^{2}+21 b^{2} c d^{2}+28 a b c+2 b^{3}\right) c e^{4} x^{5}}{8\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a}\right. \\
& \quad+\frac{5 c d e^{3}\left(140 a c^{2} d^{2}+7 b^{2} c d^{2}+28 a b c+2 b^{3}\right) x^{4}}{8\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a}+\frac{e^{2}\left(700 a c^{3} d^{4}+35 b^{2} c^{2} d^{4}+280 a b c^{2} d^{2}+20 b^{3} c d^{2}+36 a^{2} c^{2}+5 a b^{2} c+b^{4}\right) x^{3}}{8\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a} \\
& \quad+\frac{d e\left(420 a c^{3} d^{4}+21 b^{2} c^{2} d^{4}+280 a b c^{2} d^{2}+20 b^{3} c d^{2}+108 a^{2} c^{2}+15 a b^{2} c+3 b^{4}\right) x^{2}}{8\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a} \\
& \quad+\frac{\left(140 a c^{3} d^{6}+7 b^{2} c^{2} d^{6}+140 a b c^{2} d^{4}+10 b^{3} c d^{4}+108 a^{2} c^{2} d^{2}+15 a b^{2} c d^{2}+3 b^{4} d^{2}+16 a^{2} b c-a b^{3}\right) x}{8\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a} \\
& \left.\quad+\frac{d\left(20 a c^{3} d^{6}+b^{2} c^{2} d^{6}+28 a b c^{2} d^{4}+2 b^{3} c d^{4}+36 a^{2} c^{2} d^{2}+5 a b^{2} c d^{2}+b^{4} d^{2}+16 a^{2} b c-a b^{3}\right)}{8 e\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right) a}\right) /\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}\right.
\end{aligned}
$$

$$
\left.+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)^{2}+\frac{1}{16 a e}(
$$

$$
\begin{aligned}
& \left.\sum_{R=\operatorname{RootOf}\left(c e^{4} Z^{4}+4 c d e^{3} Z^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right) Z^{2}+\left(4 c d^{3} e+2 b d e\right) \quad Z+c d^{4}+b d^{2}+a\right)} \frac{\left(c e^{2}\left(20 a c+b^{2}\right) R^{2}+2 c d e\left(20 a c+b^{2}\right) __{1} R+20 a c^{2} d^{2}+b^{2} c d^{2}-16 a b c+b^{3}\right) \ln \left(x-_\right)}{\left(16 a^{2} c^{2}-8 a b^{2} c+b^{4}\right)\left(2 c e^{3} R_{-} R^{3}+6 c d e^{2} R^{2}+6 c d^{2} e_{-} R+2 c d^{3}+b e_{-} R+b d\right)}\right)
\end{aligned}
$$

Problem 172: Result is not expressed in closed-form.

$$
\int \frac{(e f x+d f)^{3}}{a+b(e x+d)^{2}+c(e x+d)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 79 leaves, 6 steps):

$$
\frac{f^{3} \ln \left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}{4 c e}+\frac{b f^{3} \operatorname{arctanh}\left(\frac{b+2 c(e x+d)^{2}}{\sqrt{-4 a c+b^{2}}}\right)}{2 c e \sqrt{-4 a c+b^{2}}}
$$

Result(type 7, 153 leaves):

Problem 173: Result is not expressed in closed-form.

$$
\int \frac{1}{(e f x+d f)^{2}\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)} \mathrm{d} x
$$

Optimal(type 3, 168 leaves, 5 steps):

$$
-\frac{1}{a e f^{2}(e x+d)}-\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\left.\sqrt{b-\sqrt{-4 a c+b^{2}}}\right) \sqrt{c}\left(1+\frac{b}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}\right.}{2 a e f^{2} \sqrt{b-\sqrt{-4 a c+b^{2}}}}-\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\left.\sqrt{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{c}\left(1-\frac{b}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}\right.}{2 a e f^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
$$

Result(type 7, 173 leaves):

$$
-\frac{1}{a e f^{2}(e x+d)}
$$

Problem 174: Result is not expressed in closed-form.

Optimal(type 3, 312 leaves, 6 steps):

$$
\begin{gathered}
\frac{10 a c-3 b^{2}}{2 a^{2}\left(-4 a c+b^{2}\right) e f^{2}(e x+d)}+\frac{b^{2}-2 a c+b c(e x+d)^{2}}{2 a\left(-4 a c+b^{2}\right) e f^{2}(e x+d)\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)} \\
-\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(3 b^{3}-16 a b c+\left(-10 a c+3 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) \sqrt{2}}{4 a^{2}\left(-4 a c+b^{2}\right)^{3 / 2} e f^{2} \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
+\frac{\arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(3 b^{3}-16 a b c-\left(-10 a c+3 b^{2}\right) \sqrt{-4 a c+b^{2}}\right) \sqrt{2}}{4 a^{2}\left(-4 a c+b^{2}\right)^{3 / 2} e f^{2} \sqrt{b+\sqrt{-4 a c+b^{2}}}}
\end{gathered}
$$

Result(type 7, 1345 leaves):

$$
\begin{aligned}
& -\frac{c^{2} e^{2} x^{3}}{f^{2} a\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{c e^{2} x^{3} b^{2}}{2 f^{2} a^{2}\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& -\frac{3 d c^{2} e x^{2}}{f^{2} a\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{3 d c e x^{2} b^{2}}{2 f^{2} a^{2}\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& -\frac{3 x c^{2} d^{2}}{f^{2} a\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{3 x b^{2} c d^{2}}{2 f^{2} a^{2}\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& -\frac{3 x b c}{2 f^{2} a\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& +\frac{x b^{3}}{2 f^{2} a^{2}\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right)\left(4 a c-b^{2}\right)} \\
& -\frac{d^{3} c^{2}}{f^{2} a\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right) e\left(4 a c-b^{2}\right)} \\
& +\frac{d^{3} b^{2} c}{2 f^{2} a^{2}\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right) e\left(4 a c-b^{2}\right)}
\end{aligned}
$$

$$
\left.\begin{array}{l}
-\frac{3 d b c}{2 f^{2} a\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right) e\left(4 a c-b^{2}\right)} \\
+\frac{d b^{3}}{2 f^{2} a^{2}\left(c e^{4} x^{4}+4 c d e^{3} x^{3}+6 c d^{2} e^{2} x^{2}+4 c d^{3} e x+b e^{2} x^{2}+c d^{4}+2 b d e x+b d^{2}+a\right) e\left(4 a c-b^{2}\right)}-\frac{1}{4 f^{2} a^{2} e}(\\
\sum_{-R=R o o t O f\left(c e^{4} Z^{4}+4 c d e^{3}-Z^{3}+\left(6 c d^{2} e^{2}+b e^{2}\right) Z^{2}+\left(4 c d^{3} e+2 b d e\right)_{-} Z+c d^{4}+b d^{2}+a\right)}^{\left(c e^{2}\left(10 a c-3 b^{2}\right) R^{2}+2 c d e\left(10 a c-3 b^{2}\right)_{-} R+10 a c^{2} d^{2}-3 b^{2} c d^{2}+13 a b c-3 b^{3}\right) \ln \left(x-{ }_{-} R\right)} \\
\left(4 a c-b^{2}\right)\left(2 c e^{3} R^{3}+6 c d e^{2} R^{2}+6 c d^{2} e_{-} R+2 c d^{3}+b e_{-} R+b d\right)
\end{array}\right) \frac{1}{f^{2} a^{2} e(e x+d)} .
$$

Problem 175: Result is not expressed in closed-form.

$$
\int \frac{(e f x+d f)^{2}}{\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 331 leaves, 6 steps):

$$
\begin{aligned}
& -\frac{f^{2}(e x+d)\left(b+2 c(e x+d)^{2}\right)}{4\left(-4 a c+b^{2}\right) e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{2}}+\frac{f^{2}(e x+d)\left(b\left(8 a c+b^{2}\right)+c\left(20 a c+b^{2}\right)(e x+d)^{2}\right)}{8 a\left(-4 a c+b^{2}\right)^{2} e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)} \\
& +\frac{f^{2} \arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b-\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b^{2}+20 a c+\frac{b\left(-52 a c+b^{2}\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}}{16 a\left(-4 a c+b^{2}\right)^{2} e \sqrt{b-\sqrt{-4 a c+b^{2}}}} \\
& +f^{2} \arctan \left(\frac{(e x+d) \sqrt{2} \sqrt{c}}{\sqrt{b+\sqrt{-4 a c+b^{2}}}}\right) \sqrt{c}\left(b^{2}+20 a c-\frac{b\left(-52 a c+b^{2}\right)}{\sqrt{-4 a c+b^{2}}}\right) \sqrt{2}
\end{aligned}
$$

$16 a\left(-4 a c+b^{2}\right)^{2} e \sqrt{b+\sqrt{-4 a c+b^{2}}}$
Result(type ?, 4750 leaves): Display of huge result suppressed!
Problem 176: Result is not expressed in closed-form.

$$
\int \frac{e f x+d f}{\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 145 leaves, 6 steps):

$$
-\frac{f\left(b+2 c(e x+d)^{2}\right)}{4\left(-4 a c+b^{2}\right) e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)^{2}}+\frac{3 c f\left(b+2 c(e x+d)^{2}\right)}{2\left(-4 a c+b^{2}\right)^{2} e\left(a+b(e x+d)^{2}+c(e x+d)^{4}\right)}-\frac{6 c^{2} f \operatorname{arctanh}\left(\frac{b+2 c(e x+d)^{2}}{\left.\sqrt{-4 a c+b^{2}}\right)}\right.}{\left(-4 a c+b^{2}\right)^{5 / 2} e}
$$

Result(type ?, 2131 leaves): Display of huge result suppressed!
Problem 177: Unable to integrate problem.

Optimal(type 6, 344 leaves, 10 steps):
$\frac{\operatorname{arctanh}\left(\frac{b+2 c(e x+d)^{3}}{2 \sqrt{c} \sqrt{a+b(e x+d)^{3}+c(e x+d)^{6}}}\right)}{3 e^{3} \sqrt{c}}$

$$
\begin{aligned}
& \frac{d^{2}(e x+d) \text { AppellF1 }\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{4}{3},-\frac{2 c(e x+d)^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c(e x+d)^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c(e x+d)^{3}}{b-\sqrt{-4 a c+b^{2}}}} \sqrt{1+\frac{2 c(e x+d)^{3}}{b+\sqrt{-4 a c+b^{2}}}}}{e^{3} \sqrt{a+b(e x+d)^{3}+c(e x+d)^{6}}} \\
&-\frac{d(e x+d)^{2} \text { AppellF1 }\left(\frac{2}{3}, \frac{1}{2}, \frac{1}{2}, \frac{5}{3},-\frac{2 c(e x+d)^{3}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c(e x+d)^{3}}{b+\sqrt{-4 a c+b^{2}}}\right) \sqrt{1+\frac{2 c(e x+d)^{3}}{b-\sqrt{-4 a c+b^{2}}} \sqrt{1+\frac{2 c(e x+d)^{3}}{b+\sqrt{-4 a c+b^{2}}}}}}{e^{3} \sqrt{a+b(e x+d)^{3}+c(e x+d)^{6}}}
\end{aligned}
$$

Result(type 8, 28 leaves):

$$
\int \frac{x^{2}}{\sqrt{a+b(e x+d)^{3}+c(e x+d)^{6}}} d x
$$

Problem 178: Result more than twice size of optimal antiderivative.

$$
\int(2+3 x)^{6}\left(1+(2+3 x)^{7}+(2+3 x)^{14}\right) d x
$$

Optimal(type 1, 28 leaves, 3 steps):

$$
\frac{(2+3 x)^{7}}{21}+\frac{(2+3 x)^{14}}{42}+\frac{(2+3 x)^{21}}{63}
$$

Result(type 1, 104 leaves):
$\frac{1162261467}{7} x^{21}+2324522934 x^{20}+15496819560 x^{19}+65431015920 x^{18}+196293047760 x^{17}+444930908256 x^{16}+790988281344 x^{15}+\frac{15819767221203}{14} x^{14}$ $+1318314865122 x^{13}+1269491970942 x^{12}+1015602174288 x^{11}+677082445416 x^{10}+376174427616 x^{9}+173635132896 x^{8}+66158154783 x^{7}$ $+20588764518 x^{6}+5149786572 x^{5}+1010576952 x^{4}+149902032 x^{3}+15808800 x^{2}+1056832 x$

Problem 179: Result more than twice size of optimal antiderivative.

$$
\int(2+3 x)^{6}\left(1+(2+3 x)^{7}+(2+3 x)^{14}\right)^{2} \mathrm{~d} x
$$

Optimal(type 1, 46 leaves, 4 steps):

$$
\frac{(2+3 x)^{7}}{21}+\frac{(2+3 x)^{14}}{21}+\frac{(2+3 x)^{21}}{21}+\frac{(2+3 x)^{28}}{42}+\frac{(2+3 x)^{35}}{105}
$$

Result(type 1, 174 leaves):
$17451466816 x+7299544818384 x^{3}+6077684727888102 x^{6}+197897276851452864 x^{8}+\frac{4057390785756924}{5} x^{5}+443569828128 x^{2}+87406679578680 x^{4}$ $+37727143432895007 x^{7}+889942562270387136 x^{9}+872775774067455498528 x^{16}+\frac{17344958593049772048}{5} x^{10}+465517091041681015296 x^{15}$
$+221699757548270194389 x^{14}+94069263918929616324 x^{13}+3534290697929473864098 x^{20}+2945285062308448290360 x^{19}$
$+2194577166014752240080 x^{18}+1463104032160519033200 x^{17}+\frac{26506949038858918036881}{7} x^{21}+11821487501620716192 x^{11}$
$+35454069480572048124 x^{12}+11118121133111046 x^{34}+126005372841925188 x^{33}+924039400840784712 x^{32}+4928210137817518464 x^{31}$
$+\frac{101849676181562048256}{5} x^{30}+67899784121041365504 x^{29}+\frac{2625458326972530284475}{14} x^{28}+437576396725285446564 x^{27}$
$+875152864622814086340 x^{26}+\frac{7584660010542711771792}{5} x^{25}+2298383223254096766840 x^{24}+3064515076512846852480 x^{23}$
$+3614565944605222108800 x^{22}+\frac{16677181699666569}{35} x^{35}$

Test results for the 27 problems in "1.2.3.3 (d+e $\left.x^{\wedge} n\right)^{\wedge} q\left(a+b x^{\wedge} n+c x^{\wedge}(2 n)\right)^{\wedge} p . t x t^{\prime \prime}$

Problem 2: Result is not expressed in closed-form

$$
\int \frac{e x^{4}+d}{c x^{8}+a} \mathrm{~d} x
$$

Optimal(type 3, 518 leaves, 19 steps):

$$
-\frac{\arctan \left(\frac{-2 c^{1 / 8} x+a^{1 / 8} \sqrt{2-\sqrt{2}}}{\left.a^{1 / 8 \sqrt{2+\sqrt{2}}}\right)(-e \sqrt{a}+d(1+\sqrt{2}) \sqrt{c}) \sqrt{2-\sqrt{2}}}\right.}{8 a^{7 / 8} c^{5 / 8}}
$$

$$
+\frac{\arctan \left(\frac{2 c^{1 / 8} x+a^{1 / 8 \sqrt{2-\sqrt{2}}}}{a^{1 / 8 \sqrt{2+\sqrt{2}}}}\right)(-e \sqrt{a}+d(1+\sqrt{2}) \sqrt{c}) \sqrt{2-\sqrt{2}}}{8 a^{7 / 8} c^{5 / 8}}
$$

$$
+\frac{\ln \left(a^{1 / 4}+c^{1 / 4} x^{2}-c^{1 / 8} a^{1 / 8} \sqrt{2-\sqrt{2}} x\right)(-e \sqrt{a}+d(1-\sqrt{2}) \sqrt{c})}{8 a^{7 / 8} c^{5 / 8} \sqrt{4-2 \sqrt{2}}}
$$

$$
-\frac{\ln \left(a^{1 / 4}+c^{1 / 4} x^{2}+c^{1 / 8} a^{1 / 8} \sqrt{2-\sqrt{2}} x\right)(-e \sqrt{a}+d(1-\sqrt{2}) \sqrt{c})}{8 a^{7 / 8} c^{5 / 8} \sqrt{4-2 \sqrt{2}}}
$$

$$
\begin{aligned}
& +\frac{\arctan \left(\frac{-2 c^{1 / 8} x+a^{1 / 8} \sqrt{2+\sqrt{2}}}{a^{1 / 8} \sqrt{2-\sqrt{2}}}\right)(-e \sqrt{a}+d(1-\sqrt{2}) \sqrt{c}) \sqrt{2+\sqrt{2}}}{8 a^{7 / 8} c^{5 / 8}} \\
& -\frac{\arctan \left(\frac{2 c^{1 / 8} x+a^{1 / 8} \sqrt{2+\sqrt{2}}}{a^{1 / 8} \sqrt{2-\sqrt{2}}}\right)(-e \sqrt{a}+d(1-\sqrt{2}) \sqrt{c}) \sqrt{2+\sqrt{2}}}{8 a^{7 / 8} c^{5 / 8}} \\
& +\frac{\ln \left(a^{1 / 4}+c^{1 / 4} x^{2}+c^{1 / 8} a^{1 / 8} \sqrt{2+\sqrt{2}} x\right)\left(d+d \sqrt{2}-\frac{e \sqrt{a}}{\sqrt{c}}\right)}{8 a^{7 / 8} c^{1 / 8} \sqrt{4+2 \sqrt{2}}}-\frac{\ln \left(a^{1 / 4}+c^{1 / 4} x^{2}-c^{1 / 8} a^{1 / 8} \sqrt{2+\sqrt{2}} x\right)(-e \sqrt{a}+d(1+\sqrt{2}) \sqrt{c})}{8 a^{7 / 8} c^{5 / 8} \sqrt{4+2 \sqrt{2}}}
\end{aligned}
$$

Result(type 7, 33 leaves):

Problem 3: Result is not expressed in closed-form.

$$
\int \frac{e x^{4}+d}{e^{2} x^{8}-x^{4} b+d^{2}} \mathrm{~d} x
$$

Optimal(type 3, 261 leaves, 7 steps):

Result(type 7, 54 leaves):

$$
\left.\frac{\left(\sum_{R=\operatorname{RootOf}\left(e^{2} \not Z^{8}-b\right.} Z Z^{4}+d^{2}\right)}{} \frac{\left(R^{4} e+d\right) \ln \left(x __{-} R\right)}{2 _R^{7} e^{2}-{ }_{-} R^{3} b}\right)
$$

Problem 4: Result is not expressed in closed-form.

$$
\int \frac{x^{4}+1}{x^{8}+3 x^{4}+1} \mathrm{~d} x
$$

Optimal(type 3, 293 leaves, 19 steps):

$$
\begin{aligned}
& \frac{\arctan \left(-1+\frac{2^{3 / 4} x}{(3+\sqrt{5})^{1 / 4}}\right)(3-\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{20}+\frac{\arctan \left(1+\frac{2^{3 / 4} x}{\left.(3+\sqrt{5})^{1 / 4}\right)(3-\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}\right.}{20} \\
& \quad-\frac{\ln \left(2 x^{2}-22^{1 / 4} x(3+\sqrt{5})^{1 / 4}+\sqrt{5}+1\right)(3-\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{40}+\frac{\ln \left(2 x^{2}+22^{1 / 4} x(3+\sqrt{5})^{1 / 4}+\sqrt{5}+1\right)(3-\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{40} \\
& \quad+\frac{\arctan \left(-1+\frac{2^{3 / 4} x}{(3-\sqrt{5})^{1 / 4}}\right)(3+\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{20}+\frac{\arctan \left(1+\frac{2^{3 / 4} x}{\left.(3-\sqrt{5})^{1 / 4}\right)(3+\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}\right.}{20} \\
& \quad-\frac{\ln \left(2 x^{2}-22^{1 / 4} x(3-\sqrt{5})^{1 / 4}+\sqrt{5}-1\right)(3+\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{40}+\frac{\ln \left(2 x^{2}+22^{1 / 4} x(3-\sqrt{5})^{1 / 4}+\sqrt{5}-1\right)(3+\sqrt{5})^{1 / 4} 2^{1 / 4} \sqrt{5}}{40}
\end{aligned}
$$

Result(type 7, 41 leaves):

$$
\frac{\left.\sum_{R=\operatorname{RootOf}\left(\not Z^{8}+3 \quad \not Z^{4}+1\right)} \frac{\left(R^{4}+1\right) \ln (x-R)}{2 _R^{7}+3 _R^{3}}\right)}{4}
$$

Problem 7: Result is not expressed in closed-form.

$$
\int \frac{x^{4}+1}{x^{8}-4 x^{4}+1} \mathrm{~d} x
$$

Optimal(type 3, 101 leaves, 7 steps):

$$
\frac{\arctan \left(\frac{2^{1 / 4} x}{\sqrt{\sqrt{3}-1}}\right) 2^{3 / 4}}{4 \sqrt{\sqrt{3}-1}}+\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} x}{\sqrt{\sqrt{3}-1}}\right) 2^{3 / 4}}{4 \sqrt{\sqrt{3}-1}}-\frac{\arctan \left(\frac{2^{1 / 4} x}{\sqrt{1+\sqrt{3}}}\right) 2^{3 / 4}}{4 \sqrt{1+\sqrt{3}}}-\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} x}{\sqrt{1+\sqrt{3}}}\right) 2^{3 / 4}}{4 \sqrt{1+\sqrt{3}}}
$$

Result(type 7, 39 leaves):

$$
\frac{\left(\sum_{R=\operatorname{RootOf}\left(Z^{8}-4 _Z^{4}+1\right)} \frac{\left(R^{4}+1\right) \ln \left(x __{-} R\right)}{R^{7}-2 _R^{3}}\right)}{8}
$$

Problem 8: Result is not expressed in closed-form.

$$
\int \frac{x^{4}+1}{x^{8}-5 x^{4}+1} \mathrm{~d} x
$$

Optimal(type 3, 123 leaves, 7 steps):

$$
\frac{\arctan \left(\frac{x \sqrt{2}}{\sqrt{-\sqrt{3}+\sqrt{7}}}\right)}{\sqrt{-6 \sqrt{3}+6 \sqrt{7}}}+\frac{\operatorname{arctanh}\left(\frac{x \sqrt{2}}{\sqrt{-\sqrt{3}+\sqrt{7}}}\right)}{\sqrt{-6 \sqrt{3}+6 \sqrt{7}}}-\frac{\arctan \left(\frac{x \sqrt{2}}{\sqrt{\sqrt{3}+\sqrt{7}}}\right)}{\sqrt{6 \sqrt{3}+6 \sqrt{7}}}-\frac{\operatorname{arctanh}\left(\frac{x \sqrt{2}}{\sqrt{\sqrt{3}+\sqrt{7}}}\right)}{\sqrt{6 \sqrt{3}+6 \sqrt{7}}}
$$

Result(type 7, 41 leaves):

$$
\frac{\left(\sum_{R=\operatorname{RootOf}\left(Z^{8}-5\right.} Z^{4}+1\right)}{4}
$$

Problem 11: Result is not expressed in closed-form.

$$
\int \frac{-x^{4}+1}{x^{8}-5 x^{4}+1} d x
$$

Optimal(type 3, 121 leaves, 7 steps):

$$
\frac{\arctan \left(\frac{x \sqrt{2}}{\sqrt{-\sqrt{3}+\sqrt{7}}}\right)}{\sqrt{-14 \sqrt{3}+14 \sqrt{7}}}+\frac{\operatorname{arctanh}\left(\frac{x \sqrt{2}}{\sqrt{-\sqrt{3}+\sqrt{7}}}\right)}{\sqrt{-14 \sqrt{3}+14 \sqrt{7}}}+\frac{\arctan \left(\frac{x \sqrt{2}}{\sqrt{\sqrt{3}+\sqrt{7}}}\right)}{\sqrt{14 \sqrt{3}+14 \sqrt{7}}}+\frac{\operatorname{arctanh}\left(\frac{x \sqrt{2}}{\sqrt{\sqrt{3}+\sqrt{7}}}\right)}{\sqrt{14 \sqrt{3}+14 \sqrt{7}}}
$$

Result(type 7, 43 leaves):

$$
\left.\frac{\left(\sum_{R=\operatorname{RootOf}\left(Z^{8}-5\right.} Z^{4}+1\right)}{} \frac{\left(-_R^{4}+1\right) \ln \left(x-_R\right)}{2 _R^{7}-5 _R^{3}}\right)
$$

Problem 13: Result is not expressed in closed-form.

$$
\int \frac{d+\frac{e}{x^{3}}}{c+\frac{a}{x^{6}}+\frac{b}{x^{3}}} \mathrm{~d} x
$$

Optimal(type 3, 577 leaves, 15 steps):

$$
\begin{aligned}
\frac{d x}{c}- & \frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(b d-c e+\frac{2 d c a-b^{2} d+b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 c^{4 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(b d-c e+\frac{2 d c a-b^{2} d+b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{12 c^{4 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(b d-c e+\frac{2 d c a-b^{2} d+b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{6 c^{4 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(b d-c e+\frac{-2 d c a+b^{2} d-b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 c^{4 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(b d-c e+\frac{-2 d c a+b^{2} d-b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{3 c^{4 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{\arctan \left(\frac{\left.\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}\right)\left(b d-c e+\frac{-2 d c a+b^{2} d-b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{3}\right.}{}+\quad
\end{aligned}
$$

Result(type 7, 66 leaves):

$$
\frac{d x}{c}+\frac{\sum_{R=\operatorname{RootOf}\left(\not Z^{6} c+Z^{3} b+a\right)} \frac{\left((-b d+c e) R^{3}-a d\right) \ln \left(x __{-} R\right)}{2 _R^{5} c+R^{2} b}}{3 c}
$$

Problem 14: Result is not expressed in closed-form.

$$
\int \frac{d+\frac{e}{x^{4}}}{c+\frac{a}{x^{8}}+\frac{b}{x^{4}}} \mathrm{~d} x
$$

Optimal(type 3, 351 leaves, 9 steps):

$$
\begin{aligned}
\frac{d x}{c}+ & \frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b d-c e+\frac{-2 d c a+b^{2} d-b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{4 c^{5 / 4}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}} \\
& +\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b d-c e+\frac{-2 d c a+b^{2} d-b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{4 c^{5 / 4}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b d-c e+\frac{2 d c a-b^{2} d+b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{4^{5 / 4}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}} \\
& +\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(b d-c e+\frac{2 d c a-b^{2} d+b c e}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{4 c^{5 / 4}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}
\end{aligned}
$$

Result(type 7, 66 leaves):

$$
\left.\frac{d x}{c}+\frac{\left.\sum_{R=\operatorname{RootOf}\left(c Z^{8}+b\right.} Z^{4}+a\right)}{} \frac{\left((-b d+c e) _R^{4}-a d\right) \ln \left(x-_{-} R\right)}{2 _R^{7} c+__{-} R^{3} b}\right)
$$

Problem 15: Unable to integrate problem.

$$
\int \frac{1}{\left(d+e x^{n}\right)\left(a+c x^{2 n}\right)} d x
$$

Optimal(type 5, 150 leaves, 6 steps):
$\frac{c d x \operatorname{hypergeom}\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{a\left(a e^{2}+c d^{2}\right)}+\frac{e^{2} x \operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{e x^{n}}{d}\right)}{d\left(a e^{2}+c d^{2}\right)}-\frac{c e x^{1+n} \operatorname{hypergeom}\left(\left[1, \frac{1+n}{2 n}\right],\left[\frac{3}{2}+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{a\left(a e^{2}+c d^{2}\right)(1+n)}$
Result(type 8, 23 leaves):

$$
\int \frac{1}{\left(d+e x^{n}\right)\left(a+c x^{2 n}\right)} \mathrm{d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{d+e x^{n}}{a-c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 5, 77 leaves, 3 steps):

$$
\frac{d x \text { hypergeom }\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right], \frac{c x^{2 n}}{a}\right)}{a}+\frac{e x^{1+n} \text { hypergeom }\left(\left[1, \frac{1+n}{2 n}\right],\left[\frac{3}{2}+\frac{1}{2 n}\right], \frac{c x^{2 n}}{a}\right)}{a(1+n)}
$$

Result(type 8, 22 leaves):

$$
\int \frac{d+e x^{n}}{a-c x^{2}} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{\left(d+e x^{n}\right)^{2}}{\left(a+c x^{2}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 5, 193 leaves, 7 steps):

$$
\begin{aligned}
& \frac{x\left(c d^{2}-a e^{2}+2 c d e x^{n}\right)}{2 a c n\left(a+c x^{2 n}\right)}+\frac{e^{2} x \operatorname{hypergeom}\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{a c}-\frac{\left(-a e^{2}+c d^{2}\right)(1-2 n) x \operatorname{hypergeom}\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{2 a^{2} c n} \\
& -\frac{d e(1-n) x^{1+n} \operatorname{hypergeom}\left(\left[1, \frac{1+n}{2 n}\right],\left[\frac{3}{2}+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{a^{2} n(1+n)}
\end{aligned}
$$

Result(type 8, 114 leaves):

$$
-\frac{x\left(-2 d e \mathrm{e}^{n \ln (x)} c+a e^{2}-c d^{2}\right)}{2 a c n\left(a+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)}+\int \frac{2 d e \mathrm{e}^{n \ln (x)} c n+2 c d^{2} n-2 d e \mathrm{e}^{n \ln (x)} c+a e^{2}-c d^{2}}{2 a c n\left(a+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)} \mathrm{d} x
$$

Problem 18: Unable to integrate problem.

$$
\int \frac{1}{\left(d+e x^{n}\right)\left(a+c x^{2 n}\right)^{3}} d x
$$

Optimal(type 5, 558 leaves, 15 steps):

$$
\begin{aligned}
& \frac{c x\left(d-e x^{n}\right)}{4 a\left(a e^{2}+c d^{2}\right) n\left(a+c x^{2 n}\right)^{2}}+\frac{c e^{2} x\left(d-e x^{n}\right)}{2 a\left(a e^{2}+c d^{2}\right)^{2} n\left(a+c x^{2 n}\right)}-\frac{c x\left(d(1-4 n)-e(1-3 n) x^{n}\right)}{8 a^{2}\left(a e^{2}+c d^{2}\right) n^{2}\left(a+c x^{2 n}\right)} \\
& +\frac{c d e^{4} x \operatorname{hypergeom}\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{a\left(a e^{2}+c d^{2}\right)^{3}}+\frac{c d(1-4 n)(1-2 n) x \operatorname{hypergeom}\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{8 a^{3}\left(a e^{2}+c d^{2}\right) n^{2}} \\
& -\frac{c d e^{2}(1-2 n) x \operatorname{hypergeom}\left(\left[1, \frac{1}{2 n}\right],\left[1+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{2 a^{2}\left(a e^{2}+c d^{2}\right)^{2} n}+\frac{e^{6} x \operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{e x^{n}}{d}\right)}{d\left(a e^{2}+c d^{2}\right)^{3}} \\
& -\frac{c e^{5} x^{1+n} \operatorname{hypergeom}\left(\left[1, \frac{1+n}{2 n}\right],\left[\frac{3}{2}+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{a\left(a e^{2}+c d^{2}\right)^{3}(1+n)}-\frac{c e(1-3 n)(1-n) x^{1+n} \operatorname{hypergeom}\left(\left[1, \frac{1+n}{2 n}\right],\left[\frac{3}{2}+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{8 a^{3}\left(a e^{2}+c d^{2}\right) n^{2}(1+n)} \\
& +\frac{c e^{3}(1-n) x^{1+n} \operatorname{hypergeom}\left(\left[1, \frac{1+n}{2 n}\right],\left[\frac{3}{2}+\frac{1}{2 n}\right],-\frac{c x^{2 n}}{a}\right)}{2 a^{2}\left(a e^{2}+c d^{2}\right)^{2} n(1+n)}
\end{aligned}
$$

Result(type 8, 531 leaves):

$$
\begin{aligned}
& \frac{1}{8 a^{2} n^{2}\left(a e^{2}+c d^{2}\right)^{2}\left(a+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)^{2}}\left(c x \left(-7 a c e^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}-3 c^{2} d^{2} e n\left(\mathrm{e}^{n \ln (x)}\right)^{3}+8 a c d e^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}+a c e^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{3}+4 c^{2} d^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right.\right. \\
& +c^{2} d^{2} e\left(\mathrm{e}^{n \ln (x)}\right)^{3}-9 a^{2} e^{3} n \mathrm{e}^{n \ln (x)}-5 a c d^{2} e n \mathrm{e}^{n \ln (x)}-a c d e^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}-c^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2} d^{3}+10 a^{2} d e^{2} n+a^{2} e^{3} \mathrm{e}^{n \ln (x)}+6 a c d^{3} n+a c d^{2} e \mathrm{e}^{n \ln (x)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-a^{2} d e^{2}-a c d^{3}\right)\right)+\int \frac{1}{8 n^{2} a^{2}\left(d+e \mathrm{e}^{n \ln (x)}\right)\left(a e^{2}+c d^{2}\right)^{2}\left(a+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)}\left(-7 a c e^{4} n^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}-3 c^{2} d^{2} e^{2} n^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}+9 a c d e^{3} n^{2} \mathrm{e}^{n \ln (x)}\right. \\
& +8 a c e^{4} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}+5 c^{2} d^{3} e n^{2} \mathrm{e}^{n \ln (x)}+4 c^{2} d^{2} e^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}+8 a^{2} e^{4} n^{2}+16 a c d^{2} e^{2} n^{2}-2 a c d e^{3} n \mathrm{e}^{n \ln (x)}-a c e^{4}\left(\mathrm{e}^{n \ln (x)}\right)^{2}+8 c^{2} d^{4} n^{2} \\
& \left.-2 c^{2} d^{3} e n \mathrm{e}^{n \ln (x)}-c^{2} d^{2} e^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}-10 a c d^{2} e^{2} n-6 c^{2} d^{4} n+a c d^{2} e^{2}+c^{2} d^{4}\right) \mathrm{d} x
\end{aligned}
$$

Problem 20: Unable to integrate problem.

$$
\int \frac{\left(a+c x^{2 n}\right)^{p}}{\left(d+e x^{n}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 6, 249 leaves, 8 steps):
$\frac{e^{2} x^{1+2 n}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(1+\frac{1}{2 n}, 2,-p, 2+\frac{1}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{d^{4}(1+2 n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}}+\frac{x\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1}{2 n}, 2,-p, 1+\frac{1}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{d^{2}\left(1+\frac{c x^{2 n}}{a}\right)^{p}}$
$-\underline{2 e x^{1+n}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+n}{2 n}, 2,-p, \frac{3}{2}+\frac{1}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}$

$$
d^{3}(1+n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\left(a+c x^{2 n}\right)^{p}}{\left(d+e x^{n}\right)^{2}} \mathrm{~d} x
$$

Problem 21: Unable to integrate problem.

$$
\int \frac{\left(a+c x^{2 n}\right)^{p}}{\left(d+e x^{n}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 6, 341 leaves, 10 steps):
$3 e^{2} x^{1+2 n}\left(a+c x^{2 n}\right)^{p}$ AppellF1 $\left(1+\frac{1}{2 n}, 3,-p, 2+\frac{1}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)$

$$
d^{5}(1+2 n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}
$$

$-\frac{e^{3} x^{1+3 n}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{3}{2}+\frac{1}{2 n}, 3,-p, \frac{5}{2}+\frac{1}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{p}+\frac{x\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1}{2 n}, 3,-p, 1+\frac{1}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{p}$

$$
d^{6}(1+3 n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}
$$

$$
d^{3}\left(1+\frac{c x^{2 n}}{a}\right)^{p}
$$

$-\underline{3 e x^{1+n}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+n}{2 n}, 3,-p, \frac{3}{2}+\frac{1}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}$

$$
d^{4}(1+n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\left(a+c x^{2 n}\right)^{p}}{\left(d+e x^{n}\right)^{3}} \mathrm{~d} x
$$

Problem 23: Unable to integrate problem.

$$
\int \frac{\left(d+e x^{n}\right)^{2}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 5, 216 leaves, 5 steps):

$$
\begin{aligned}
\frac{e^{2} x}{c} & +\frac{x \text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)\left(2 c d e-b e^{2}+\frac{2 c^{2} d^{2}+b^{2} e^{2}-2 c e(a e+b d)}{\sqrt{-4 a c+b^{2}}}\right)}{c\left(b-\sqrt{-4 a c+b^{2}}\right)} \\
& +\frac{x \text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)\left(2 c d e-b e^{2}+\frac{-2 c^{2} d^{2}-b^{2} e^{2}+2 c e(a e+b d)}{\sqrt{-4 a c+b^{2}}}\right)}{c\left(b+\sqrt{-4 a c+b^{2}}\right)}
\end{aligned}
$$

Result(type 8, 68 leaves):

$$
\frac{e^{2} x}{c}+\int-\frac{b e^{2} \mathrm{e}^{n \ln (x)}-2 d e \mathrm{e}^{n \ln (x)} c+a e^{2}-c d^{2}}{c\left(a+b \mathrm{e}^{n \ln (x)}+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)} \mathrm{d} x
$$

Problem 24: Unable to integrate problem.

$$
\int \frac{\left(d+e x^{n}\right)^{3}}{\left(a+b x^{n}+c x^{2 n}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 5, 1674 leaves, 11 steps):
$\frac{x\left(b^{2} c d^{3}-2 a c d\left(-3 a e^{2}+c d^{2}\right)-a b e\left(a e^{2}+3 c d^{2}\right)-\left(a b^{2} e^{3}+2 a c e\left(-a e^{2}+3 c d^{2}\right)-b c d\left(3 a e^{2}+c d^{2}\right)\right) x^{n}\right)}{2 a c\left(-4 a c+b^{2}\right) n\left(a+b x^{n}+c x^{2 n}\right)^{2}}$
$+\frac{e^{2} x\left(3 b^{2} c d-6 a c^{2} d-b^{3} e+a b c e+c\left(-2 a c e-b^{2} e+3 b c d\right) x^{n}\right)}{a c^{2}\left(-4 a c+b^{2}\right) n\left(a+b x^{n}+c x^{2 n}\right)}-\frac{1}{2 a^{2} c^{2}\left(-4 a c+b^{2}\right)^{2} n^{2}\left(a+b x^{n}+c x^{2 n}\right)}\left(x\left(a b^{2} c^{2} d\left(3 a e^{2}(1\right.\right.\right.$
$\left.-9 n)-5 c d^{2}(1-3 n)\right)+4 a^{2} c^{3} d\left(-3 a e^{2}+c d^{2}\right)(1-4 n)-2 a b^{5} e^{3} n+2 a^{2} b c^{2} e\left(3 c d^{2}(2-3 n)-5 a e^{2} n\right)-3 a b^{3} c e\left(-3 a e^{2} n+c d^{2}\right)$
$+b^{4} c d\left(c d^{2}(1-2 n)+6 a e^{2} n\right)+c\left(4 a^{2} c^{2} e\left(-a e^{2}+3 c d^{2}\right)(1-3 n)-2 a b^{4} e^{3} n-2 a b c^{2} d\left(c d^{2}(2-7 n)+3 a e^{2} n\right)+b^{3} c d\left(c d^{2}(1-2 n)\right.\right.$

$$
\begin{aligned}
& \left.\left.\left.\left.+6 a e^{2} n\right)-a b^{2} c e\left(3 c d^{2}-a e^{2}(1+2 n)\right)\right) x^{n}\right)\right)+\frac{1}{2 a^{2} c\left(-4 a c+b^{2}\right)^{2} n^{2}\left(b-\sqrt{-4 a c+b^{2}}\right)}\left(x \text { hypergeom } \left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],\right.\right. \\
& \left.-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)\left((1 - n) \left(4 a^{2} c^{2} e\left(-a e^{2}+3 c d^{2}\right)(1-3 n)-2 a b^{4} e^{3} n-2 a b c^{2} d\left(c d^{2}(2-7 n)+3 a e^{2} n\right)+b^{3} c d\left(c d^{2}(1-2 n)+6 a e^{2} n\right)\right.\right. \\
& \left.-a b^{2} c e\left(3 c d^{2}-a e^{2}(1+2 n)\right)\right)+\frac{1}{\sqrt{-4 a c+b^{2}}}\left(-2 a b^{5} e^{3}(1-n) n+b^{4} c d(1-n)\left(c d^{2}(1-2 n)+6 a e^{2} n\right)+8 a^{2} c^{3} d\left(-3 a e^{2}\right.\right. \\
& \left.+c d^{2}\right)\left(8 n^{2}-6 n+1\right)-6 a b^{2} c^{2} d\left(c d^{2}\left(3 n^{2}-4 n+1\right)-a e^{2}\left(15 n^{2}-10 n+1\right)\right)+4 a^{2} b c^{2} e\left(3 c d^{2}\left(-3 n^{2}-n+1\right)+a e^{2}\left(19 n^{2}-11 n+1\right)\right) \\
& \left.\left.-a b^{3} c e\left(3 c d^{2}(1-n)+a e^{2}\left(30 n^{2}-19 n+1\right)\right)\right)\right)+\frac{1}{2 a^{2} c\left(-4 a c+b^{2}\right)^{2} n^{2}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(x \operatorname { h y p e r g e o m } \left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],\right.\right. \\
& \left.-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)\left((1 - n) \left(4 a^{2} c^{2} e\left(-a e^{2}+3 c d^{2}\right)(1-3 n)-2 a b^{4} e^{3} n-2 a b c^{2} d\left(c d^{2}(2-7 n)+3 a e^{2} n\right)+b^{3} c d\left(c d^{2}(1-2 n)+6 a e^{2} n\right)\right.\right. \\
& \left.-a b^{2} c e\left(3 c d^{2}-a e^{2}(1+2 n)\right)\right)+\frac{1}{\sqrt{-4 a c+b^{2}}}\left(2 a b^{5} e^{3}(1-n) n-b^{4} c d(1-n)\left(c d^{2}(1-2 n)+6 a e^{2} n\right)-8 a^{2} c^{3} d\left(-3 a e^{2}\right.\right. \\
& \left.+c d^{2}\right)\left(8 n^{2}-6 n+1\right)+6 a b^{2} c^{2} d\left(c d^{2}\left(3 n^{2}-4 n+1\right)-a e^{2}\left(15 n^{2}-10 n+1\right)\right)-4 a^{2} b c^{2} e\left(3 c d^{2}\left(-3 n^{2}-n+1\right)+a e^{2}\left(19 n^{2}-11 n+1\right)\right) \\
& \left.\left.+a b^{3} c e\left(3 c d^{2}(1-n)+a e^{2}\left(30 n^{2}-19 n+1\right)\right)\right)\right)+\frac{1}{a c\left(-4 a c+b^{2}\right) n\left(b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}\right)}\left(e ^ { 2 } x \operatorname { h y p e r g e o m } \left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],\right.\right. \\
& \left.-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right) \\
& \left.\left.\left.-e(1-n) \sqrt{-4 a c+b^{2}}\right)\right)\right)+\frac{1}{a c\left(-4 a c+b^{2}\right) n\left(b^{2}-4 a c-b \sqrt{\left.-4 a c+b^{2}\right)}\right)} \\
& -b^{3} e(1-n)+e^{2}(1-n)\left(3 c d-e \sqrt{-4 a c+b^{2}}\right)+b c\left(2 a e(2-5 n)+3 d(1-n) \sqrt{-4 a c+b^{2}}\right)-2 a c(6 c d(1-2 n)+e(1 \\
& \left.\left.\left.-n) \sqrt{-4 a c+b^{2}}\right)\right)\right)
\end{aligned}
$$

Result(type 8, 1579 leaves):
$\frac{1}{2\left(4 a c-b^{2}\right)^{2} a^{2} n^{2}\left(a+b \mathrm{e}^{n \ln (x)}+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)^{2}}\left(x\left(-b^{5} d^{3} \mathrm{e}^{n \ln (x)}-4 a^{3} c^{2} d^{3}-3 a^{3} b^{2} d e^{2} n+30 a^{3} b c d^{2} e n-3 a^{2} b^{3} d^{2} e n+4 a^{3} c^{2} e^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{3}\right.\right.$
$-b^{3} c^{2} d^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{3}-a^{2} b^{3} e^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{2}-4 a^{2} c^{3} d^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{2}+2 b^{5} d^{3} n \mathrm{e}^{n \ln (x)}-2 b^{4} c d^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{2}+4 a^{4} c e^{3} \mathrm{e}^{n \ln (x)}-a^{3} b^{2} e^{3} \mathrm{e}^{n \ln (x)}+24 a^{3} c^{2} d^{3} n$
$+12 a^{4} c d e^{2}+5 a^{2} b^{2} c d^{3}-a b^{4} d^{3}-12 a^{2} c^{3} d^{2} e\left(\mathrm{e}^{n \ln (x)}\right)^{3}+4 a b c^{3} d^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{3}+4 b^{4} c d^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}-4 a^{4} c e^{3} n \mathrm{e}^{n \ln (x)}+10 a^{3} b^{2} e^{3} n \mathrm{e}^{n \ln (x)}$
$+4 a^{3} b c e^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{2}+12 a^{3} c^{2} d e^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}+9 a b^{2} c^{2} d^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{2}-12 a^{3} c^{2} d^{2} e \mathrm{e}^{n \ln (x)}-3 a^{2} b^{3} d e^{2} \mathrm{e}^{n \ln (x)}+3 a b^{4} d^{2} e \mathrm{e}^{n \ln (x)}+4 a b^{3} c d^{3} \mathrm{e}^{n \ln (x)}$
$-18 a^{2} b c^{2} d e^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}-27 a^{2} b^{2} c d e^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}+54 a^{2} b c^{2} d^{2} e n\left(\mathrm{e}^{n \ln (x)}\right)^{2}-30 a^{3} b c d e^{2} n \mathrm{e}^{n \ln (x)}+12 a^{2} b^{2} c d^{2} e n \mathrm{e}^{n \ln (x)}+2 a^{2} b^{2} c e^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}$
$+36 a^{2} c^{3} d^{2} e n\left(\mathrm{e}^{n \ln (x)}\right)^{3}-14 a b c^{3} d^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}+6 a^{3} b c e^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}-29 a b^{2} c^{2} d^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}+3 a b^{2} c^{2} d^{2} e\left(\mathrm{e}^{n \ln (x)}\right)^{3}+60 a^{3} c^{2} d^{2} e n \mathrm{e}^{n \ln (x)}$
$-6 a^{2} b^{3} d e^{2} n \mathrm{e}^{n \ln (x)}-3 a^{2} b^{2} c d e^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}-2 a^{2} b c^{2} d^{3} n \mathrm{e}^{n \ln (x)}-24 a^{2} b c^{2} d^{2} e\left(\mathrm{e}^{n \ln (x)}\right)^{2}-12 a b^{3} c d^{3} n \mathrm{e}^{n \ln (x)}+6 a b^{3} c d^{2} e\left(\mathrm{e}^{n \ln (x)}\right)^{2}$
$+12 a^{3} b c d e^{2} \mathrm{e}^{n \ln (x)}-9 a^{2} b^{2} c d^{2} e \mathrm{e}^{n \ln (x)}+4 a^{3} c^{2} e^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}+2 b^{3} c^{2} d^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}+3 a^{2} b^{3} e^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}-a^{2} b^{2} c e^{3}\left(\mathrm{e}^{n \ln (x)}\right)^{3}$
$\left.\left.+16 a^{2} c^{3} d^{3} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}-21 a^{2} b^{2} c d^{3} n+3 a b^{4} d^{3} n-3 a^{3} b^{2} d e^{2}-12 a^{3} b c d^{2} e+3 a^{2} b^{3} d^{2} e+6 a^{4} b e^{3} n-24 a^{4} c d e^{2} n\right)\right)+\int$
$-\frac{1}{2\left(4 a c-b^{2}\right)^{2} a^{2} n^{2}\left(a+b \mathrm{e}^{n \ln (x)}+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)}\left(-36 a^{2} c^{2} d^{2} e n^{2} \mathrm{e}^{n \ln (x)}+14 a b c^{2} d^{3} n^{2} \mathrm{e}^{n \ln (x)}+48 a^{2} c^{2} d^{2} e n \mathrm{e}^{n \ln (x)}-18 a b c^{2} d^{3} n \mathrm{e}^{n \ln (x)}\right.$
$+3 a b^{2} c d^{2} e \mathrm{e}^{n \ln (x)}-4 a^{2} c^{2} d^{3}-b^{4} d^{3}+4 a^{3} c e^{3} \mathrm{e}^{n \ln (x)}-a^{2} b^{2} e^{3} \mathrm{e}^{n \ln (x)}-b^{3} c d^{3} \mathrm{e}^{n \ln (x)}-3 a b^{3} d^{2} e n-3 a^{2} b^{2} d e^{2} n+30 a^{2} b c d^{2} e n$
$+18 a^{2} b c d e^{2} n^{2} \mathrm{e}^{n \ln (x)}-18 a^{2} b c d e^{2} n \mathrm{e}^{n \ln (x)}-3 a b^{2} c d^{2} e n \mathrm{e}^{n \ln (x)}-32 a^{2} c^{2} d^{3} n^{2}-2 b^{4} d^{3} n^{2}+5 a b^{2} c d^{3}+24 a^{2} c^{2} d^{3} n+3 b^{4} d^{3} n+12 a^{3} c d e^{2}$
$-4 a^{3} c e^{3} n^{2} \mathrm{e}^{n \ln (x)}-2 a^{2} b^{2} e^{3} n^{2} \mathrm{e}^{n \ln (x)}-2 b^{3} c d^{3} n^{2} \mathrm{e}^{n \ln (x)}+3 a^{2} b^{2} e^{3} n \mathrm{e}^{n \ln (x)}+3 b^{3} c d^{3} n \mathrm{e}^{n \ln (x)}-12 a^{2} c^{2} d^{2} e \mathrm{e}^{n \ln (x)}+4 a b c^{2} d^{3} \mathrm{e}^{n \ln (x)}+16 a b^{2} c d^{3} n^{2}$
$\left.+6 a^{3} b e^{3} n-21 a b^{2} c d^{3} n-3 a^{2} b^{2} d e^{2}-12 a^{2} b c d^{2} e-24 a^{3} c d e^{2} n+3 a b^{3} d^{2} e\right) \mathrm{d} x$

Problem 25: Unable to integrate problem.

$$
\int \frac{\left(d+e x^{n}\right)^{2}}{\left(a+b x^{n}+c x^{2 n}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 5, 1165 leaves, 11 steps):
$\frac{x\left(b^{2} d^{2}-2 a b d e-2 a\left(-a e^{2}+c d^{2}\right)+\left(a b e^{2}-4 d c a e+b c d^{2}\right) x^{n}\right)}{2 a\left(-4 a c+b^{2}\right) n\left(a+b x^{n}+c x^{2 n}\right)^{2}}+\frac{e^{2} x\left(b^{2}-2 a c+b c x^{n}\right)}{a c\left(-4 a c+b^{2}\right) n\left(a+b x^{n}+c x^{2 n}\right)}$
$+\frac{1}{2 a^{2} c\left(-4 a c+b^{2}\right)^{2} n^{2}\left(a+b x^{n}+c x^{2 n}\right)}\left(x\left(2 a b^{3} c d e-a b^{2} c\left(a e^{2}(1-9 n)-5 c d^{2}(1-3 n)\right)-4 a^{2} c^{2}\left(-a e^{2}+c d^{2}\right)(1-4 n)-4 a^{2} b c^{2} d e(2\right.\right.$
$\left.-3 n)-b^{4}\left(c d^{2}(1-2 n)+2 a e^{2} n\right)+c\left(2 a b^{2} c d e-8 a^{2} c^{2} d e(1-3 n)+2 a b c\left(c d^{2}(2-7 n)+a e^{2} n\right)-b^{3}\left(c d^{2}(1-2 n)+2 a e^{2} n\right)\right) x^{n}\right)$
$)-\frac{1}{2 a^{2}\left(-4 a c+b^{2}\right)^{2} n^{2}\left(b-\sqrt{-4 a c+b^{2}}\right)}\left(x \operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)\left((1-n)\left(2 a b^{2} c d e-8 a^{2} c^{2} d e(1-3 n)\right.\right.\right.$
$\left.+2 a b c\left(c d^{2}(2-7 n)+a e^{2} n\right)-b^{3}\left(c d^{2}(1-2 n)+2 a e^{2} n\right)\right)+\frac{1}{\sqrt{-4 a c+b^{2}}}\left(2 a b^{3} c d e(1-n)-b^{4}(1-n)\left(c d^{2}(1-2 n)+2 a e^{2} n\right)\right.$
$\left.\left.\left.-8 a^{2} b c^{2} d e\left(-3 n^{2}-n+1\right)-8 a^{2} c^{2}\left(-a e^{2}+c d^{2}\right)\left(8 n^{2}-6 n+1\right)+2 a b^{2} c\left(3 c d^{2}\left(3 n^{2}-4 n+1\right)-a e^{2}\left(15 n^{2}-10 n+1\right)\right)\right)\right)\right)$
$-\frac{1}{2 a^{2}\left(-4 a c+b^{2}\right)^{2} n^{2}\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(x \operatorname{hypergeom}\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)\left((1-n)\left(2 a b^{2} c d e-8 a^{2} c^{2} d e(1-3 n)\right.\right.\right.$
$\left.+2 a b c\left(c d^{2}(2-7 n)+a e^{2} n\right)-b^{3}\left(c d^{2}(1-2 n)+2 a e^{2} n\right)\right)+\frac{1}{\sqrt{-4 a c+b^{2}}}\left(-2 a b^{3} c d e(1-n)+b^{4}(1-n)\left(c d^{2}(1-2 n)+2 a e^{2} n\right)\right.$
$\left.\left.\left.+8 a^{2} b c^{2} d e\left(-3 n^{2}-n+1\right)+8 a^{2} c^{2}\left(-a e^{2}+c d^{2}\right)\left(8 n^{2}-6 n+1\right)-2 a b^{2} c\left(3 c d^{2}\left(3 n^{2}-4 n+1\right)-a e^{2}\left(15 n^{2}-10 n+1\right)\right)\right)\right)\right)$

$$
\begin{gathered}
-\frac{e^{2} x \text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)\left(4 a c(1-2 n)-b^{2}(1-n)-b(1-n) \sqrt{-4 a c+b^{2}}\right)}{a\left(-4 a c+b^{2}\right) n\left(b^{2}-4 a c-b \sqrt{-4 a c+b^{2}}\right)} \\
-\frac{e^{2} x \text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)\left(4 a c(1-2 n)-b^{2}(1-n)+b(1-n) \sqrt{-4 a c+b^{2}}\right)}{a\left(-4 a c+b^{2}\right) n\left(b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}\right)}
\end{gathered}
$$

Result(type 8, 1189 leaves):

```
\(-\frac{1}{2\left(4 a c-b^{2}\right)^{2} a^{2} n^{2}\left(a+b \mathrm{e}^{n \ln (x)}+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)^{2}}\left(x\left(-4 a^{4} c e^{2}+4 d^{2} c^{2} a^{3}+b^{5} d^{2} \mathrm{e}^{n \ln (x)}-36 a^{2} b c^{2} d e n\left(\mathrm{e}^{n \ln (x)}\right)^{2}-8 a^{2} b^{2} c d e n \mathrm{e}^{n \ln (x)}-20 a^{3} b c d e n\right.\right.\)
    \(+2 a^{2} b^{3} d e n+6 a^{2} b c^{2} e^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}-24 a^{2} c^{3} d e n\left(\mathrm{e}^{n \ln (x)}\right)^{3}+14 a b c^{3} d^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}+9 a^{2} b^{2} c e^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}+29 a b^{2} c^{2} d^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}\)
    \(-2 a b^{2} c^{2} d e\left(\mathrm{e}^{n \ln (x)}\right)^{3}+10 a^{3} b c e^{2} n \mathrm{e}^{n \ln (x)}-40 a^{3} c^{2} d e n \mathrm{e}^{n \ln (x)}+2 a^{2} b c^{2} d^{2} n \mathrm{e}^{n \ln (x)}+16 a^{2} b c^{2} d e\left(\mathrm{e}^{n \ln (x)}\right)^{2}+12 a b^{3} c d^{2} n \mathrm{e}^{n \ln (x)}\)
    \(-4 a b^{3} c d e\left(\mathrm{e}^{n \ln (x)}\right)^{2}+6 a^{2} b^{2} c d e \mathrm{e}^{n \ln (x)}-2 b^{3} c^{2} d^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{3}-16 a^{2} c^{3} d^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}+8 a^{2} c^{3} d e\left(\mathrm{e}^{n \ln (x)}\right)^{3}-4 a b c^{3} d^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{3}\)
    \(-4 b^{4} c d^{2} n\left(\mathrm{e}^{n \ln (x)}\right)^{2}+2 a^{2} b^{3} e^{2} n \mathrm{e}^{n \ln (x)}+a^{2} b^{2} c e^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}-9 a b^{2} c^{2} d^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}-4 a^{3} b c e^{2} \mathrm{e}^{n \ln (x)}+8 a^{3} c^{2} d e \mathrm{e}^{n \ln (x)}-2 a b^{4} d e \mathrm{e}^{n \ln (x)}\)
    \(-4 a b^{3} c d^{2} \mathrm{e}^{n \ln (x)}+a^{3} b^{2} e^{2} n+21 a^{2} b^{2} c d^{2} n-3 a b^{4} d^{2} n+8 a^{3} b c d e-2 a^{2} b^{3} d e+b^{3} c^{2} d^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{3}-4 a^{3} c^{2} e^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}+4 a^{2} c^{3} d^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}\)
    \(\left.\left.-2 b^{5} d^{2} n \mathrm{e}^{n \ln (x)}+2 b^{4} c d^{2}\left(\mathrm{e}^{n \ln (x)}\right)^{2}+a^{2} b^{3} e^{2} \mathrm{e}^{n \ln (x)}+8 a^{4} c e^{2} n-24 a^{3} c^{2} d^{2} n+a^{3} b^{2} e^{2}-5 a^{2} b^{2} c d^{2}+a b^{4} d^{2}\right)\right)+\)
    \(\int \frac{1}{2\left(4 a c-b^{2}\right)^{2} a^{2} n^{2}\left(a+b \mathrm{e}^{n \ln (x)}+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)}\left(-4 a^{3} c e^{2}+b^{4} d^{2}+4 d^{2} c^{2} a^{2}-5 a b^{2} c d^{2}+2 a b^{2} c d e n \mathrm{e}^{n \ln (x)}-20 a^{2} b c d e n+2 a b^{3} d e n\right.\)
    \(-6 a^{2} b c e^{2} n^{2} \mathrm{e}^{n \ln (x)}+24 a^{2} c^{2} d e n^{2} \mathrm{e}^{n \ln (x)}-14 a b c^{2} d^{2} n^{2} \mathrm{e}^{n \ln (x)}+6 a^{2} b c e^{2} n \mathrm{e}^{n \ln (x)}-32 a^{2} c^{2} d e n \mathrm{e}^{n \ln (x)}+18 a b c^{2} d^{2} n \mathrm{e}^{n \ln (x)}-2 a b^{2} c d e \mathrm{e}^{n \ln (x)}\)
    \(+2 b^{3} c d^{2} n^{2} \mathrm{e}^{n \ln (x)}-3 b^{3} c d^{2} n \mathrm{e}^{n \ln (x)}+8 a^{2} c^{2} d e \mathrm{e}^{n \ln (x)}-4 a b c^{2} d^{2} \mathrm{e}^{n \ln (x)}-2 a b^{3} d e+a^{2} b^{2} e^{2} n+21 a b^{2} c d^{2} n+8 a^{2} b c d e-16 a b^{2} c d^{2} n^{2}\)
    \(\left.+b^{3} c d^{2} \mathrm{e}^{n \ln (x)}+32 a^{2} c^{2} d^{2} n^{2}+2 b^{4} d^{2} n^{2}+a^{2} b^{2} e^{2}+8 a^{3} c e^{2} n-24 a^{2} c^{2} d^{2} n-3 b^{4} d^{2} n\right) \mathrm{d} x\)
```

Problem 26: Unable to integrate problem.

$$
\int\left(d+e x^{n}\right)^{3}\left(a+b x^{n}+c x^{2 n}\right)^{p} \mathrm{~d} x
$$

Optimal(type 6, 574 leaves, 10 steps):
$\frac{3 d^{2} e x^{1+n}\left(a+b x^{n}+c x^{2 n}\right)^{p} \text { AppellF1 }\left(1+\frac{1}{n},-p,-p, 2+\frac{1}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{p^{p}}$

$$
(1+n)\left(1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)^{p}\left(1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)^{p}
$$

$$
\begin{aligned}
& +\frac{3 d e^{2} x^{1+2 n}\left(a+b x^{n}+c x^{2 n}\right)^{p} \text { AppellF1 }\left(2+\frac{1}{n},-p,-p, 3+\frac{1}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{(1+2 n)\left(1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)^{p}\left(1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)^{p}} \\
& +\frac{e^{3} x^{1+3 n}\left(a+b x^{n}+c x^{2 n}\right)^{p} \text { AppellF1 }\left(3+\frac{1}{n},-p,-p, 4+\frac{1}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{(1+3 n)\left(1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)^{p}\left(1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)^{p}} \\
& +\frac{d^{3} x\left(a+b x^{n}+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1}{n},-p,-p, 1+\frac{1}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{\left(1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)^{p}\left(1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)^{p}}
\end{aligned}
$$

Result(type 8, 28 leaves):

$$
\int\left(d+e x^{n}\right)^{3}\left(a+b x^{n}+c x^{2 n}\right)^{p} \mathrm{~d} x
$$

Problem 27: Unable to integrate problem.

$$
\int\left(d+e x^{n}\right)^{2}\left(a+b x^{n}+c x^{2 n}\right)^{p} \mathrm{~d} x
$$

Optimal(type 6, 423 leaves, 8 steps):

$$
\begin{gathered}
\frac{2 d e x^{1+n}\left(a+b x^{n}+c x^{2 n}\right)^{p} \text { AppellF1 }\left(1+\frac{1}{n},-p,-p, 2+\frac{1}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{(1+n)\left(1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)^{p}\left(1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)^{p}} \\
+\frac{e^{2} x^{1+2 n}\left(a+b x^{n}+c x^{2 n}\right)^{p} \text { AppellF1 }\left(2+\frac{1}{n},-p,-p, 3+\frac{1}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{(1+2 n)\left(1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)^{p}\left(1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)^{p}} \\
+\frac{\left.d^{2} x\left(a+b x^{n}+c x^{2 n}\right)^{p} \text { AppellF1(} \frac{1}{n},-p,-p, 1+\frac{1}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{\left(1+\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)^{p}\left(1+\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)^{p}}
\end{gathered}
$$

Result(type 8, 28 leaves):

$$
\int\left(d+e x^{n}\right)^{2}\left(a+b x^{n}+c x^{2 n}\right)^{p} \mathrm{~d} x
$$

Test results for the 46 problems in "1.2.3.4 (f $x)^{\wedge} m\left(d+e x^{\wedge} n\right)^{\wedge} q\left(a+b x^{\wedge} n+c x^{\wedge}(2 n)\right)^{\wedge} p . t x t^{\prime \prime}$ Problem 5: Result is not expressed in closed-form.

$$
\int \frac{x^{3}\left(e x^{3}+d\right)}{c x^{6}+b x^{3}+a} d x
$$

Optimal(type 3, 577 leaves, 14 steps):

$$
\begin{aligned}
& \frac{e x}{c}+\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(c d-b e+\frac{-2 a c e+b^{2} e-b c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 c^{4 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(c d-b e+\frac{-2 a c e+b^{2} e-b c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{} \\
& 12 c^{4 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \\
& -\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(c d-b e+\frac{-2 a c e+b^{2} e-b c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{} \\
& 6 c^{4 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \\
& +\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(c d-b e+\frac{2 a c e-b^{2} e+b c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 c^{4 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\underline{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(c d-b e+\frac{2 a c e-b^{2} e+b c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}} \\
& 12 c^{4 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \\
& -\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(c d-b e+\frac{2 a c e-b^{2} e+b c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{} \\
& 6 c^{4 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}
\end{aligned}
$$

Result(type 7, 66 leaves):

$$
\frac{e x}{c}+\frac{\sum_{R=\operatorname{RootOf}\left(\not Z^{6} c+\not Z^{3} b+a\right)} \frac{\left((-b e+c d)_{-} R^{3}-a e\right) \ln \left(x-_{-} R\right)}{2_{-} R^{5} c++_{-} R^{2} b}}{3 c}
$$

Problem 6: Result is not expressed in closed-form.

$$
\int \frac{x\left(e x^{3}+d\right)}{c x^{6}+b x^{3}+a} \mathrm{~d} x
$$

Optimal(type 3, 490 leaves, 13 steps):

$$
-\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{6 c^{2 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
$$

$$
+\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{1 / 3}
$$

$$
-\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3} \sqrt{3}}{6 c^{2 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
$$

$$
-\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{2 / 3(1 / 3}
$$

$$
\begin{aligned}
& +\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{12 c^{2 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}} \\
& -\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right)^{1 / 3} \sqrt{3}}{6 c^{2 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
\end{aligned}
$$

Result(type 7, 48 leaves):

Problem 7: Result is not expressed in closed-form.

$$
\int \frac{e x^{3}+d}{c x^{6}+b x^{3}+a} \mathrm{~d} x
$$

Optimal(type 3, 490 leaves, 13 steps):

$$
\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 c^{1 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
$$

$$
-\underline{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}
$$

$$
12 c^{1 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}
$$

$$
-\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{6 c^{1 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
$$

$$
+\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 c^{1 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
$$

$$
-\underline{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}
$$

$$
12 c^{1 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}
$$

$$
-\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{6 c^{1 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
$$

Result(type 7, 46 leaves):
$\left.\frac{\left(\sum_{R=\operatorname{RootOf}(}\left(Z^{6} c+Z^{3} b+a\right)\right.}{} \frac{\left(R^{3} e+d\right) \ln (x-R)}{2_{-} R^{5} c+R^{2} b}\right)$

Problem 8: Result is not expressed in closed-form.

$$
\int \frac{e x^{3}+d}{x^{2}\left(c x^{6}+b x^{3}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 517 leaves, 14 steps):

$$
\begin{aligned}
& -\frac{d}{x a}+\frac{c^{1 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{6 a\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}} \\
& -\frac{c^{1 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{l^{1 / 3}} \\
& 12 a\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3} \\
& +\frac{c^{1 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3} \sqrt{3}}{6 a\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}} \\
& +\frac{c^{1 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{6 a\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}} \\
& c^{1 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right)^{2^{1 / 3}} \\
& 12 a\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3} \\
& +\frac{c^{1 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3} \sqrt{3}}{6 a\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
\end{aligned}
$$

Result(type 7, 69 leaves):
$-\frac{\sum_{R=\operatorname{RootOf}\left(\not Z^{6} c+Z^{3} b+a\right)} \frac{\left(c d_{-} R^{4}+(-a e+b d)_{-} R\right) \ln \left(x-_{-} R\right)}{2_{-} R^{5} c+R_{-} R^{2} b}}{3 a}-\frac{d}{x a}$

Problem 9: Result is not expressed in closed-form.

$$
\int \frac{e x^{3}+d}{x^{3}\left(c x^{6}+b x^{3}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 517 leaves, 14 steps):

$$
\begin{aligned}
& -\frac{d}{2 a x^{2}}-\frac{c^{2 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 a\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{c^{2 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{12 a\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{c^{2 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{6 a\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\frac{c^{2 / 3} \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 a\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& +\frac{c^{2 / 3} \ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& 12 a\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \\
& +\frac{c^{2 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{6 a\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
\end{aligned}
$$

Result(type 7, 67 leaves):

$$
-\frac{d}{2 a x^{2}}+\frac{\sum_{R=\operatorname{RootOf}\left(Z^{6} c+Z^{3} b+a\right)} \frac{\left(-R^{3} c d+a e-b d\right) \ln \left(x-__{-} R\right)}{2 R^{5} c+R^{2} b}}{3 a}
$$

Problem 11: Result is not expressed in closed-form.

$$
\int \frac{-x^{3}+1}{x^{6}-x^{3}+1} \mathrm{~d} x
$$

Optimal(type 3, 289 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{\left(1+\frac{22^{1 / 3} x}{(1-I \sqrt{3})^{1 / 3}}\right) \sqrt{3}}{3}\right)(I-\sqrt{3}) 2^{2 / 3}}{6(1-I \sqrt{3})^{2 / 3}}-\frac{\ln \left(-2^{1 / 3} x+(1-I \sqrt{3})^{1 / 3}\right)(3-I \sqrt{3}) 2^{2 / 3}}{18(1-I \sqrt{3})^{2 / 3}} \\
& +\frac{\ln \left(2^{2 / 3} x^{2}+2^{1 / 3}(1-I \sqrt{3})^{1 / 3} x+(1-I \sqrt{3})^{2 / 3}\right)(3-I \sqrt{3}) 2^{2 / 3}}{36(1-I \sqrt{3})^{2 / 3}}-\frac{\ln \left(-2^{1 / 3} x+(1+I \sqrt{3})^{1 / 3}\right)(3+I \sqrt{3}) 2^{2 / 3}}{18(1+I \sqrt{3})^{2 / 3}} \\
& \left.\quad+\frac{\ln \left(2^{2 / 3} x^{2}+2^{1 / 3} x(1+I \sqrt{3})^{1 / 3}+(1+I \sqrt{3})^{2 / 3}\right)(3+I \sqrt{3}) 2^{2 / 3}}{36(1+I \sqrt{3})^{2 / 3}}+\frac{\arctan \left(\frac{22^{1 / 3} x}{\left.(1+I \sqrt{3})^{1 / 3}\right) \sqrt{3}}\right.}{3}\right)(I+\sqrt{3}) 2^{2 / 3}
\end{aligned}
$$

Result(type 7, 43 leaves):

$$
\frac{\left(\sum_{-R=\operatorname{RootOf}\left(Z^{6}-Z^{3}+1\right)} \frac{\left(-R^{3}+1\right) \ln \left(x-_R\right)}{2 _R^{5}-_R^{2}}\right)}{3}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int\left(e x^{3}+d\right)^{5 / 2}\left(c x^{6}+b x^{3}+a\right) d x
$$

Optimal(type 4, 321 leaves, 6 steps):
$\frac{30 d\left(667 a e^{2}-58 b d e+16 c d^{2}\right) x\left(e x^{3}+d\right)^{3 / 2}}{124729 e^{2}}+\frac{2\left(667 a e^{2}-58 b d e+16 c d^{2}\right) x\left(e x^{3}+d\right)^{5 / 2}}{11339 e^{2}}-\frac{2(-29 b e+8 c d) x\left(e x^{3}+d\right)^{7 / 2}}{667 e^{2}}$

$$
+\frac{2 c x^{4}\left(e x^{3}+d\right)^{7 / 2}}{29 e}+\frac{54 d^{2}\left(667 a e^{2}-58 b d e+16 c d^{2}\right) x \sqrt{e x^{3}+d}}{124729 e^{2}}
$$

$$
\begin{aligned}
& +\frac{1}{124729 e^{7 / 3} \sqrt{e x^{3}+d} \sqrt{\frac{d^{1 / 3}\left(d^{1 / 3}+e^{1 / 3} x\right)}{\left(e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})\right)^{2}}}}\left(5 4 3 ^ { 3 / 4 } d ^ { 3 } (6 6 7 a e ^ { 2 } - 5 8 b d e + 1 6 c d ^ { 2 }) \left(d^{1 / 3}\right.\right. \\
& \left.\left.+e^{1 / 3} x\right) \text { EllipticF }\left(\frac{e^{1 / 3} x+d^{1 / 3}(1-\sqrt{3})}{e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{d^{2 / 3}-d^{1 / 3} e^{1 / 3} x+e^{2 / 3} x^{2}}{\left(e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})\right)^{2}}}\right)
\end{aligned}
$$

$$
\text { Result(type 4, } 1069 \text { leaves): }
$$

$a\left(\frac{2 e^{2} x^{7} \sqrt{e x^{3}+d}}{17}+\frac{74 d e x^{4} \sqrt{e x^{3}+d}}{187}+\frac{106 d^{2} x \sqrt{e x^{3}+d}}{187}-\frac{1}{187 e \sqrt{e x^{3}+d}}\left(54 \mathrm{I} d^{3} \sqrt{3}\left(-d e^{2}\right)^{1 /}\right.\right.$

$$
\sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}} \sqrt{\frac{x-\frac{\left(-d e^{2}\right)^{1 / 3}}{e}}{\frac{-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}}{2 e}}} \text { (} \sqrt{\frac{-1}{2 e}}}
$$

$$
\sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \text { EllipticF } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} 3 \sqrt{3}}{}
$$

$$
\left.\left.\sqrt{\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{e\left(-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right)}}\right)\right)+b\left(\frac{2 e^{2} x^{10} \sqrt{e x^{3}+d}}{23}+\frac{98 d e x^{7} \sqrt{e x^{3}+d}}{391}+\frac{974 d^{2} x^{4} \sqrt{e x^{3}+d}}{4301}+\frac{162 d^{3} x \sqrt{e x^{3}+d}}{4301 e}\right.
$$

$$
+\frac{1}{4301 e^{2} \sqrt{e x^{3}+d}}\left(108 \mathrm{I} d^{4} \sqrt{3}\left(-d e^{2}\right)^{1 /}\right.
$$

$$
\sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \text { EllipticF } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} 3}{3}
$$

$$
\begin{aligned}
& \sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3}}{2} \sqrt{\frac{x-\frac{\left(-d e^{2}\right)^{1 / 3}}{e}}{\frac{\left.-2 e^{2}\right)^{1 / 3}}{-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}}}} \sqrt{\frac{1}{2 e}}} \\
& \sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \text { EllipticF } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} 3}{3}, \\
& \sqrt{\left.\frac{\left(-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right)}{\left(-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2(10}\right)}\right)+c\left(\frac{2 e^{2} x^{13} \sqrt{e x^{3}+d}}{29}+\frac{122 d e x^{10} \sqrt{e x^{3}+d}}{667}+\frac{1562 d^{2} x^{7} \sqrt{e x^{3}+d}}{11339}+\frac{810 d^{3} x^{4} \sqrt{e x^{3}+d}}{124729 e}\right.} \\
& -\frac{1296 d^{4} x \sqrt{e x^{3}+d}}{124729 e^{2}}-\frac{1}{124729 e^{3} \sqrt{e x^{3}+d}}\left(864 \mathrm{I} d^{5} \sqrt{3}\left(-d e^{2}\right)^{1 /}\right.
\end{aligned}
$$

$$
\left.\sqrt{\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{e\left(-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right)}} \sqrt{\frac{1}{2 e}} \right\rvert\,
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{c x^{6}+b x^{3}+a}{\left(e x^{3}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 226 leaves, 3 steps):

$$
\begin{aligned}
& \frac{2\left(a e^{2}-b d e+c d^{2}\right) x}{3 d e^{2} \sqrt{e x^{3}+d}}+\frac{2 c x \sqrt{e x^{3}+d}}{5 e^{2}} \\
& -\frac{1}{45 d e^{7 / 3} \sqrt{e x^{3}+d} \sqrt{\frac{d^{1 / 3}\left(d^{1 / 3}+e^{1 / 3} x\right)}{\left(e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})\right)^{2}}}}\left(2 (1 6 c d ^ { 2 } - 5 e (a e + 2 b d)) (d ^ { 1 / 3 } + e ^ { 1 / 3 } x) \text { EllipticF } \left(\frac{e^{1 / 3} x+d^{1 / 3}(1-\sqrt{3})}{e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})},\right.\right. \\
& \left.\mathrm{I} \sqrt{3}+2 \mathrm{I})\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{d^{2 / 3}-d^{1 / 3} e^{1 / 3} x+e^{2 / 3} x^{2}}{\left(e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})\right)^{2}}} 3^{3 / 4}\right)
\end{aligned}
$$

Result(type 4, 933 leaves):
$a\left(\frac{2 x}{3 d \sqrt{\left(x^{3}+\frac{d}{e}\right) e}}-\frac{1}{9 d e \sqrt{e x^{3}+d}}\left(2 \mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 /}\right.\right.$
$\sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3}}{} \sqrt{\left(-d e^{2}\right)^{1 / 3}}} \sqrt{\frac{x-\frac{\left(-d e^{2}\right)^{1 / 3}}{e}}{\frac{-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}}{2}}}$

$$
\begin{aligned}
& \sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \text { EllipticF } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} 3}{3}, \\
& \left.\left.\sqrt{\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{e\left(-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right)}}\right)\right)+b\left(-\frac{2 x}{3 e \sqrt{\left(x^{3}+\frac{d}{e}\right) e}}-\frac{1}{9 e^{2} \sqrt{e x^{3}+d}}\left(4 \mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 /}\right.\right. \\
& \sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3}}{2}} \sqrt{\left(-d e^{2}\right)^{1 / 3}} \sqrt{\frac{x-\frac{\left(-d e^{2}\right)^{1 / 3}}{e}}{-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}}} \\
& \sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \text { EllipticF } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} 3}{3}, \\
& \left.\left.\sqrt{\frac{\left(-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right)}{e\left(-d e^{2}\right)^{1 / 3}}}\right)\right)+c\left(\frac{2 d x}{3 e^{2} \sqrt{\left(x^{3}+\frac{d}{e}\right) e}}+\frac{2 x \sqrt{e x^{3}+d}}{5 e^{2}}+\frac{1}{45 e^{3} \sqrt{e x^{3}+d}}\left(32 \mathrm{I} d \sqrt{3}\left(-d e^{2}\right)^{1 /}\right.\right. \\
& 3 \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3}}{} \sqrt{\left(-d e^{2}\right)^{1 / 3}}} \sqrt{\frac{x-\frac{\left(-d e^{2}\right)^{1 / 3}}{e}}{\frac{-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}}{2 e}}}
\end{aligned}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \frac{c x^{6}+b x^{3}+a}{\left(e x^{3}+d\right)^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 282 leaves, 4 steps):
$\frac{2\left(a e^{2}-b d e+c d^{2}\right) x}{15 d e^{2}\left(e x^{3}+d\right)^{5 / 2}}-\frac{2\left(-13 a e^{2}-2 b d e+17 c d^{2}\right) x}{135 d^{2} e^{2}\left(e x^{3}+d\right)^{3 / 2}}+\frac{2\left(91 a e^{2}+14 b d e+16 c d^{2}\right) x}{405 d^{3} e^{2} \sqrt{e x^{3}+d}}$
$+\frac{1}{1215 d^{3} e^{7 / 3} \sqrt{e x^{3}+d} \sqrt{\frac{d^{1 / 3}\left(d^{1 / 3}+e^{1 / 3} x\right)}{\left(e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})\right)^{2}}}}\left(2\left(91 a e^{2}+14 b d e+16 c d^{2}\right)\left(d^{1 / 3}\right.\right.$ $+e^{1 / 3} x$) EllipticF $\left(\frac{e^{1 / 3} x+d^{1 / 3}(1-\sqrt{3})}{e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{d^{2 / 3}-d^{1 / 3} e^{1 / 3} x+e^{2 / 3} x^{2}}{\left(e^{1 / 3} x+d^{1 / 3}(1+\sqrt{3})\right)^{2}} 3^{3 / 4}}$
Result(type 4, 1094 leaves):
$a\left(\frac{2 x \sqrt{e x^{3}+d}}{15 d e^{3}\left(x^{3}+\frac{d}{e}\right)^{3}}+\frac{26 x \sqrt{e x^{3}+d}}{135 d^{2} e^{2}\left(x^{3}+\frac{d}{e}\right)^{2}}+\frac{182 x}{405 d^{3} \sqrt{\left(x^{3}+\frac{d}{e}\right) e}}-\frac{1}{1215 d^{3} e \sqrt{e x^{3}+d}}\right) 182 \mathrm{I} \sqrt{3}\left(-d e^{2}\right) 1 /$

$$
\sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \sqrt{\frac{x-\frac{\left(-d e^{2}\right)^{1 / 3}}{e}}{-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}}}
$$

$$
\sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \text { EllipticF } \sqrt[{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} 3 \text {, }}]{\substack{\frac{1}{2}}}
$$

$$
\begin{aligned}
& \sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3}}{} \sqrt{\left(-d e^{2}\right)^{1 / 3}}} \sqrt{\frac{x-\frac{\left(-d e^{2}\right)^{1 / 3}}{e}}{-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}}} \\
& \sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \text { EllipticF } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} 3}{3}, \\
& \left.\left.\sqrt{\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{e\left(-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right)}}\right)\right)+b\left(-\frac{2 x \sqrt{e x^{3}+d}}{15 e^{4}\left(x^{3}+\frac{d}{e}\right)^{3}}+\frac{4 x \sqrt{e x^{3}+d}}{135 d e^{3}\left(x^{3}+\frac{d}{e}\right)^{2}}+\frac{28 x}{405 e d^{2} \sqrt{\left(x^{3}+\frac{d}{e}\right) e}}\right. \\
& -\frac{1}{1215 e^{2} d^{2} \sqrt{e x^{3}+d}}\left(28 \mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 /}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\sqrt{\frac{\left(-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right)}{e\left(-d e^{2}\right)^{1 / 3}}}\right)\right)+c\left(\frac{2 d x \sqrt{e x^{3}+d}}{15 e^{5}\left(x^{3}+\frac{d}{e}\right)^{3}}-\frac{34 x \sqrt{e x^{3}+d}}{135 e^{4}\left(x^{3}+\frac{d}{e}\right)^{2}}+\frac{32 x}{405 e^{2} d \sqrt{\left(x^{3}+\frac{d}{e}\right) e}}\right. \\
& -\frac{1}{1215 e^{3} d \sqrt{e x^{3}+d}}\left(32 \mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 /}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} \text { EllipticF } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-d e^{2}\right)^{1 / 3}}{2 e}-\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right) \sqrt{3} e}{\left(-d e^{2}\right)^{1 / 3}}} 3}{3}, \\
& \left.\left.\sqrt{\frac{\left(-\frac{3\left(-d e^{2}\right)^{1 / 3}}{2 e}+\frac{\mathrm{I} \sqrt{3}\left(-d e^{2}\right)^{1 / 3}}{2 e}\right)}{e\left(-d e^{2}\right)^{1 / 3}}}\right)\right)
\end{aligned}
$$

Problem 15: Result is not expressed in closed-form.

$$
\int \frac{x^{2}\left(e x^{4}+d\right)}{c x^{8}+b x^{4}+a} \mathrm{~d} x
$$

Optimal(type 3, 291 leaves, 7 steps):
$\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{4 c^{3 / 4}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}-\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{4 c^{3 / 4}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}$

$$
+\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{4 c^{3 / 4}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}-\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{4 c^{3 / 4}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}
$$

Result(type 7, 50 leaves):
$\frac{\left(\sum_{R=\operatorname{RootOf}\left(Z^{8} c+Z^{4} b+a\right)} \frac{\left(R^{6} e+_{_} R^{2} d\right) \ln \left(x __{-} R\right)}{2 _R^{7} c+R^{3} b}\right)}{4}$

Problem 16: Result is not expressed in closed-form.

$$
\int \frac{e x^{4}+d}{c x^{8}+b x^{4}+a} \mathrm{~d} x
$$

Optimal(type 3, 291 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{4 c^{1 / 4}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}}-\frac{\operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(e+\frac{b e-2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4}}{4 c^{1 / 4}\left(-b-\sqrt{-4 a c+b^{2}}\right)^{3 / 4}} \\
& \arctan \left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4} \quad \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(e+\frac{-b e+2 c d}{\sqrt{-4 a c+b^{2}}}\right) 2^{3 / 4} \\
& 4 c^{1 / 4}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4} \quad 4 c^{1 / 4}\left(-b+\sqrt{-4 a c+b^{2}}\right)^{3 / 4}
\end{aligned}
$$

Result(type 7, 46 leaves):

$$
\frac{\left(\sum_{R=\operatorname{RootOf}\left(Z^{8} c+Z^{4} b+a\right)} \frac{\left(R^{4} e+d\right) \ln \left(x-_{-} R\right)}{2 _R^{7} c+R_{-}^{3} b}\right)}{4}
$$

Problem 17: Result is not expressed in closed-form.

$$
\int \frac{e x^{4}+d}{x^{2}\left(c x^{8}+b x^{4}+a\right)} \mathrm{d} x
$$

Optimal(type 3, 312 leaves, 8 steps):
$-\frac{d}{x a}-\frac{c^{1 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{4 a\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}+\frac{c^{1 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(d+\frac{2 a e-b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{4 a\left(-b-\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}$

$$
-\frac{c^{1 / 4} \arctan \left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{4 a\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}+\frac{c^{1 / 4} \operatorname{arctanh}\left(\frac{2^{1 / 4} c^{1 / 4} x}{\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}\right)\left(d+\frac{-2 a e+b d}{\sqrt{-4 a c+b^{2}}}\right) 2^{1 / 4}}{4 a\left(-b+\sqrt{-4 a c+b^{2}}\right)^{1 / 4}}
$$

Result(type 7, 71 leaves):

$$
-\frac{\sum_{R=\operatorname{RootOf}\left(Z^{8} c+Z^{4} b+a\right)} \frac{\left(c d_{-} R^{6}+(-a e+b d) R_{-}^{2}\right) \ln \left(x-_{-} R\right)}{2 R^{7} c+R_{-}^{3} b}}{4 a}-\frac{d}{x a}
$$

Problem 18: Result is not expressed in closed-form.

$$
\int \frac{-x^{4}+1}{x^{8}-x^{4}+1} \mathrm{~d} x
$$

Optimal(type 3, 307 leaves, 19 steps):

$$
\begin{aligned}
& \frac{\ln \left(1+x^{2}-x\left(\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\right)}{8}-\frac{\ln \left(1+x^{2}+x\left(\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{6}\right)}{8}-\frac{\arctan \left(\frac{-2 x+\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}\right)}{\arctan \left(\frac{2 x+\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}\right)} \\
& +\frac{4\left(\frac{3 \sqrt{2}}{2}-\frac{\sqrt{6}}{2}\right)}{\arctan \left(\frac{-2 x+\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}}{2}\right)} \\
& \left.+\frac{\ln \left(1+x^{2}-x\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right)\right)\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{6}\right)}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{2}\right) \\
& \quad
\end{aligned}
$$

Result(type 7, 43 leaves):

$$
\frac{\left.\sum_{R=\operatorname{RootOf}\left(\not Z^{8}-\not Z^{4}+1\right)} \frac{\left(-R^{4}+1\right) \ln \left(x-_R\right)}{2 _R^{7}-_R^{3}}\right)}{4}
$$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}}{\left(a+\frac{c}{x^{2}}+\frac{b}{x}\right)(e x+d)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 335 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{(2 a d+b e) x}{a^{2} e^{3}}+\frac{x^{2}}{2 a e^{2}}+\frac{d^{5}}{e^{4}\left(a d^{2}-e(b d-c e)\right)(e x+d)}+\frac{d^{4}\left(3 a d^{2}-e(4 b d-5 c e)\right) \ln (e x+d)}{e^{4}\left(a d^{2}-e(b d-c e)\right)^{2}} \\
& +\frac{\left(b^{4} d^{2}-2 b^{3} c d e+4 a b c^{2} d e+a c^{2}\left(a d^{2}-c e^{2}\right)-b^{2} c\left(3 a d^{2}-c e^{2}\right)\right) \ln \left(a x^{2}+b x+c\right)}{2 a^{3}\left(a d^{2}-e(b d-c e)\right)^{2}} \\
& +\frac{\left(b^{5} d^{2}-2 b^{4} c d e+8 a b^{2} c^{2} d e-4 a^{2} c^{3} d e+a b c^{2}\left(5 a d^{2}-3 c e^{2}\right)-b^{3} c\left(5 a d^{2}-c e^{2}\right)\right) \operatorname{arctanh}\left(\frac{2 x a+b}{\sqrt{-4 a c+b^{2}}}\right)}{a^{3}\left(a d^{2}-e(b d-c e)\right)^{2} \sqrt{-4 a c+b^{2}}}
\end{aligned}
$$

Result(type 3, 942 leaves):

$$
\begin{aligned}
& \frac{x^{2}}{2 a e^{2}}-\frac{2 d x}{a e^{3}}-\frac{b x}{a^{2} e^{2}}+\frac{\ln \left(a x^{2}+b x+c\right) d^{2} c^{2}}{2\left(a d^{2}-b d e+c e^{2}\right)^{2} a}-\frac{3 \ln \left(a x^{2}+b x+c\right) b^{2} c d^{2}}{2\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{2}}+\frac{2 \ln \left(a x^{2}+b x+c\right) b c^{2} d e}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{2}}-\frac{\ln \left(a x^{2}+b x+c\right) c^{3} e^{2}}{2\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{2}} \\
& +\frac{\ln \left(a x^{2}+b x+c\right) b^{4} d^{2}}{2\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{3}}-\frac{\ln \left(a x^{2}+b x+c\right) b^{3} c d e}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{3}}+\frac{\ln \left(a x^{2}+b x+c\right) b^{2} c^{2} e^{2}}{2\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{3}}-\frac{5 \arctan \left(\frac{2 x a+b}{\sqrt{4 a c-b^{2}}}\right) b c^{2} d^{2}}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a \sqrt{4 a c-b^{2}}} \\
& +\frac{4 \arctan \left(\frac{2 x a+b}{\sqrt{4 a c-b^{2}}}\right) c^{3} d e}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a \sqrt{4 a c-b^{2}}}+\frac{5 \arctan \left(\frac{2 x a+b}{\sqrt{4 a c-b^{2}}}\right) b^{3} c d^{2}}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{2} \sqrt{4 a c-b^{2}}}-\frac{8 \arctan \left(\frac{2 x a+b}{\sqrt{4 a c-b^{2}}}\right) b^{2} c^{2} d e}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{2} \sqrt{4 a c-b^{2}}} \\
& +\frac{3 \arctan \left(\frac{2 x a+b}{\sqrt{4 a c-b^{2}}}\right) b c^{3} e^{2}}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{2} \sqrt{4 a c-b^{2}}}-\frac{\arctan \left(\frac{2 x a+b}{\sqrt{4 a c-b^{2}}}\right) b^{5} d^{2}}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{3} \sqrt{4 a c-b^{2}}}+\frac{2 \arctan \left(\frac{2 x a+b}{\sqrt{4 a c-b^{2}}}\right) b^{4} c d e}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{3} \sqrt{4 a c-b^{2}}} \\
& -\frac{\arctan \left(\frac{2 x a+b}{\sqrt{4 a c-b^{2}}}\right) b^{3} c^{2} e^{2}}{\left(a d^{2}-b d e+c e^{2}\right)^{2} a^{3} \sqrt{4 a c-b^{2}}}+\frac{3 d^{6} \ln (e x+d) a}{e^{4}\left(a d^{2}-b d e+c e^{2}\right)^{2}}-\frac{4 d^{5} \ln (e x+d) b}{e^{3}\left(a d^{2}-b d e+c e^{2}\right)^{2}}+\frac{5 d^{4} \ln (e x+d) c}{e^{2}\left(a d^{2}-b d e+c e^{2}\right)^{2}} \\
& +\frac{d^{5}}{e^{4}\left(a d^{2}-b d e+c e^{2}\right)(e x+d)}
\end{aligned}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}} \sqrt{e x+d} \mathrm{~d} x
$$

Optimal(type 4, 702 leaves, 10 steps):

$-c e$)) x EllipticF $\left(\frac{\sqrt{\frac{b+2 x a+\sqrt{-4 a c+b^{2}}}{\sqrt{-4 a c+b^{2}}}} \sqrt{2}}{2}\right.$,

$$
\left.\left.\sqrt{-\frac{2 e \sqrt{-4 a c+b^{2}}}{2 a d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}\right) \sqrt{2} \sqrt{-4 a c+b^{2}} \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}} \sqrt{-\frac{a\left(a x^{2}+b x+c\right)}{-4 a c+b^{2}}} \sqrt{\frac{a(e x+d)}{2 a d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}\right)
$$

Result(type ?, 9181 leaves): Display of huge result suppressed!
Problem 25: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}} \sqrt{e x+d} \mathrm{~d} x
$$

Optimal(type 4, 572 leaves, 8 steps):

$$
-\frac{2 x\left(4 a^{2} d^{2}+4 b^{2} e^{2}-a e(2 b d-5 c e)-3 a e(a d-4 b e) x\right) \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}} \sqrt{e x+d}}{105 a^{2} e^{2}}+\frac{2 x\left(a x^{2}+b x+c\right) \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}} \sqrt{e x+d}}{7 a}
$$

$$
-\frac{1}{105 a^{3} e^{3}\left(a x^{2}+b x+c\right) \sqrt{e x+d}}\left(2 (8 a ^ { 2 } d ^ { 2 } - 4 b ^ { 2 } e ^ { 2 } - a e (b d - 1 0 c e)) (a d ^ { 2 } - e (b d - c e)) x \operatorname { E l l i p t i c F } \left(\frac{\sqrt{\frac{b+2 x a+\sqrt{-4 a c+b^{2}}}{\sqrt{2}}}}{2},\right.\right.
$$

$$
\left.\left.\sqrt{-\frac{2 e \sqrt{-4 a c+b^{2}}}{2 a d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}\right) \sqrt{2} \sqrt{-4 a c+b^{2}} \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}} \sqrt{-\frac{a\left(a x^{2}+b x+c\right)}{-4 a c+b^{2}}} \sqrt{\frac{a(e x+d)}{2 a d-e\left(b+\sqrt{-4 a c+b^{2}}\right)}}\right)
$$

Result(type ?, 6301 leaves): Display of huge result suppressed!
Problem 26: Unable to integrate problem.

$$
\int \frac{(f x)^{m}\left(a+c x^{2 n}\right)^{p}}{\left(d+e x^{n}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 6, 290 leaves, 8 steps):
$\underline{x(f x)^{m}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+m}{2 n}, 2,-p, 1+\frac{1+m}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}$

$$
\begin{gathered}
d^{2}(1+m)\left(1+\frac{c x^{2 n}}{a}\right)^{p} \\
-\frac{2 e x^{1+n}(f x)^{m}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+m+n}{2 n}, 2,-p, \frac{1+m+3 n}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{d^{3}(1+m+n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}} \\
+\frac{e^{2} x^{1+2 n}(f x)^{m}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+m+2 n}{2 n}, 2,-p, \frac{1+m+4 n}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{d^{4}(1+m+2 n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}}
\end{gathered}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(f x)^{m}\left(a+c x^{2 n}\right)^{p}}{\left(d+e x^{n}\right)^{2}} \mathrm{~d} x
$$

Problem 27: Unable to integrate problem.

$$
\int \frac{(f x)^{m}\left(a+c x^{2 n}\right)^{p}}{\left(d+e x^{n}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 6, 396 leaves, 10 steps):

$$
\frac{x(f x)^{m}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+m}{2 n}, 3,-p, 1+\frac{1+m}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{d^{3}(1+m)\left(1+\frac{c x^{2 n}}{a}\right)^{p}}
$$

$$
-\frac{3 e x^{1+n}(f x)^{m}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+m+n}{2 n}, 3,-p, \frac{1+m+3 n}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{(}
$$

$$
d^{4}(1+m+n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}
$$

$$
+\frac{3 e^{2} x^{1+2 n}(f x)^{m}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+m+2 n}{2 n}, 3,-p, \frac{1+m+4 n}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{d^{5}(1+m+2 n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}}
$$

$$
-\frac{e^{3} x^{1+3 n}(f x)^{m}\left(a+c x^{2 n}\right)^{p} \text { AppellF1 }\left(\frac{1+m+3 n}{2 n}, 3,-p, \frac{1+m+5 n}{2 n}, \frac{e^{2} x^{2 n}}{d^{2}},-\frac{c x^{2 n}}{a}\right)}{d^{6}(1+m+3 n)\left(1+\frac{c x^{2 n}}{a}\right)^{p}}
$$

Result(type 8, 28 leaves):

$$
\int \frac{(f x)^{m}\left(a+c x^{2 n}\right)^{p}}{\left(d+e x^{n}\right)^{3}} \mathrm{~d} x
$$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int x^{-1+n}\left(b+2 c x^{n}\right)\left(-a+b x^{n}+c x^{2 n}\right)^{13} \mathrm{~d} x
$$

Optimal(type 3, 23 leaves, 2 steps):

$$
\frac{\left(a-b x^{n}-c x^{2 n}\right)^{14}}{14 n}
$$

Result(type ?, 2045 leaves): Display of huge result suppressed!
Problem 29: Result more than twice size of optimal antiderivative.

$$
\int(2 c x+b)\left(c x^{2}+b x\right)^{13} \mathrm{~d} x
$$

Optimal(type 1, 13 leaves, 1 step):

$$
\frac{\left(c x^{2}+b x\right)^{14}}{14}
$$

Result(type 1, 154 leaves):
$\frac{1}{14} c^{14} x^{28}+b c^{13} x^{27}+\frac{13}{2} b^{2} c^{12} x^{26}+26 b^{3} c^{11} x^{25}+\frac{143}{2} b^{4} c^{10} x^{24}+143 b^{5} c^{9} x^{23}+\frac{429}{2} b^{6} c^{8} x^{22}+\frac{1716}{7} b^{7} c^{7} x^{21}+\frac{429}{2} b^{8} c^{6} x^{20}+143 b^{9} c^{5} x^{19}$

$$
+\frac{143}{2} b^{10} c^{4} x^{18}+26 b^{11} c^{3} x^{17}+\frac{13}{2} b^{12} c^{2} x^{16}+b^{13} c x^{15}+\frac{1}{14} b^{14} x^{14}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int x\left(2 c x^{2}+b\right)\left(c x^{4}+b x^{2}\right)^{13} \mathrm{~d} x
$$

Optimal(type 1, 14 leaves, 3 steps):

$$
\frac{x^{28}\left(c x^{2}+b\right)^{14}}{28}
$$

Result(type 1, 156 leaves):
$\frac{1}{28} c^{14} x^{56}+\frac{1}{2} b c^{13} x^{54}+\frac{13}{4} b^{2} c^{12} x^{52}+13 b^{3} c^{11} x^{50}+\frac{143}{4} b^{4} c^{10} x^{48}+\frac{143}{2} b^{5} c^{9} x^{46}+\frac{429}{4} b^{6} c^{8} x^{44}+\frac{858}{7} b^{7} c^{7} x^{42}+\frac{429}{4} b^{8} c^{6} x^{40}+\frac{143}{2} b^{9} c^{5} x^{38}$

$$
+\frac{143}{4} b^{10} c^{4} x^{36}+13 b^{11} c^{3} x^{34}+\frac{13}{4} b^{12} c^{2} x^{32}+\frac{1}{2} b^{13} c x^{30}+\frac{1}{28} b^{14} x^{28}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{x\left(2 c x^{2}+b\right)}{\left(c x^{4}+b x^{2}\right)^{8}} \mathrm{~d} x
$$

Optimal(type 1, 14 leaves, 3 steps):

$$
-\frac{1}{14 x^{14}\left(c x^{2}+b\right)^{7}}
$$

Result(type 1, 196 leaves):

$$
-\frac{c^{8}\left(-\frac{b^{6}}{7 c\left(c x^{2}+b\right)^{7}}-\frac{66 b}{c\left(c x^{2}+b\right)^{2}}-\frac{30 b^{2}}{c\left(c x^{2}+b\right)^{3}}-\frac{132}{c\left(c x^{2}+b\right)}-\frac{12 b^{3}}{c\left(c x^{2}+b\right)^{4}}-\frac{4 b^{4}}{c\left(c x^{2}+b\right)^{5}}-\frac{b^{5}}{c\left(c x^{2}+b\right)^{6}}\right)}{2 b^{13}}-\frac{1}{14 b^{7} x^{14}}-\frac{66 c^{6}}{b^{13} x^{2}}
$$

$$
+\frac{33 c^{5}}{b^{12} x^{4}}-\frac{15 c^{4}}{b^{11} x^{6}}+\frac{6 c^{3}}{b^{10} x^{8}}-\frac{2 c^{2}}{b^{9} x^{10}}+\frac{c}{2 b^{8} x^{12}}
$$

Problem 41: Unable to integrate problem.

$$
\int \frac{(f x)^{m}\left(d+e x^{n}\right)}{\left(a+b x^{n}+c x^{2 n}\right)^{2}} d x
$$

Optimal(type 5, 364 leaves, 5 steps):

$$
\begin{aligned}
& \frac{(f x)^{1+m}\left(b^{2} d-2 d c a-b e a+c(-2 a e+b d) x^{n}\right)}{a\left(-4 a c+b^{2}\right) f n\left(a+b x^{n}+c x^{2 n}\right)}-\frac{1}{a\left(-4 a c+b^{2}\right) f(1+m) n\left(b-\sqrt{-4 a c+b^{2}}\right)}\left(c (f x) ^ { 1 + m } \text { hypergeom } \left(\left[1, \frac{1+m}{n}\right],\right.\right. \\
& \left.\left.\left[\frac{1+m+n}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)\left((-2 a e+b d)(1+m-n)+\frac{-4 a c d(1+m-2 n)+b^{2} d(1+m-n)-2 a b e n}{\sqrt{-4 a c+b^{2}}}\right)\right) \\
& -\frac{1}{a\left(-4 a c+b^{2}\right) f(1+m) n\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(c(f x)^{1+m} \operatorname{hypergeom}\left(\left[1, \frac{1+m}{n}\right],\left[\frac{1+m+n}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)((-2 a e+b d)(1+m\right. \\
& \left.-n)+\frac{4 a c d(1+m-2 n)-b^{2} d(1+m-n)+2 a b e n}{\sqrt{-4 a c+b^{2}}}\right)
\end{aligned}
$$

Result(type 8, 31 leaves):

$$
\int \frac{(f x)^{m}\left(d+e x^{n}\right)}{\left(a+b x^{n}+c x^{2 n}\right)^{2}} \mathrm{~d} x
$$

Problem 42: Unable to integrate problem.

$$
\int \frac{x\left(d+e x^{n}\right)^{q}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 6, 198 leaves, 5 steps):

$$
-\frac{c x^{2}\left(d+e x^{n}\right)^{q} \text { AppellF1 }\left(\frac{2}{n}, 1,-q, \frac{n+2}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{e x^{n}}{d}\right)}{\left(1+\frac{e x^{n}}{d}\right)^{q}\left(b^{2}-4 a c-b \sqrt{-4 a c+b^{2}}\right)}-\frac{c x^{2}\left(d+e x^{n}\right)^{q} \operatorname{AppellF} 1\left(\frac{2}{n}, 1,-q, \frac{n+2}{n},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}},-\frac{e x^{n}}{d}\right)}{\left(1+\frac{e x^{n}}{d}\right)^{q}\left(b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}\right)}
$$

Result(type 8, 29 leaves):

$$
\int \frac{x\left(d+e x^{n}\right)^{q}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \frac{\left(d+e x^{n}\right)^{q}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 6, 186 leaves, 5 steps):

$$
-\frac{2 c x\left(d+e x^{n}\right)^{q} \text { AppellF1 }\left(\frac{1}{n}, 1,-q, 1+\frac{1}{n},-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}},-\frac{e x^{n}}{d}\right)}{\left(1+\frac{e x^{n}}{d}\right)^{q}\left(b^{2}-4 a c-b \sqrt{-4 a c+b^{2}}\right)}-\frac{2 c x\left(d+e x^{n}\right)^{q} \operatorname{AppellF1}\left(\frac{1}{n}, 1,-q, 1+\frac{1}{n},-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}},-\frac{e x^{n}}{d}\right)}{\left(1+\frac{e x^{n}}{d}\right)^{q}\left(b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}\right)}
$$

Result(type 8, 28 leaves):

$$
\int \frac{\left(d+e x^{n}\right)^{q}}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int \frac{x^{2}\left(d+e x^{n}\right)^{q}}{\left(a+b x^{n}+c x^{2 n}\right)^{2}} d x
$$

Optimal(type 1, 1 leaves, 0 steps):

Result(type 8, 31 leaves):

$$
\int \frac{x^{2}\left(d+e x^{n}\right)^{q}}{\left(a+b x^{n}+c x^{2 n}\right)^{2}} \mathrm{~d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \frac{\left(d+e x^{n}\right)^{q}}{x\left(a+b x^{n}+c x^{2 n}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 5, 757 leaves, 0 steps):
$\frac{(e x+d)^{q+1}\left(b^{2} c d-2 a c^{2} d-b^{3} e+3 a b c e+c\left(2 a c e-b^{2} e+b c d\right) x\right)}{a\left(-4 a c+b^{2}\right)\left(a e^{2}-b d e+c d^{2}\right)\left(c x^{2}+b x+a\right)}-\frac{(e x+d)^{q+1} \text { hypergeom }\left([1, q+1],[2+q], \frac{e x+d}{d}\right)}{a^{2} d(q+1)}$

$$
-\frac{c(e x+d)^{q+1} \text { hypergeom }\left([1,1],[1-q], \frac{-2 c d+e\left(b-\sqrt{-4 a c+b^{2}}\right)}{e\left(b+2 c x-\sqrt{-4 a c+b^{2}}\right)}\right)\left(1+\frac{b}{\sqrt{-4 a c+b^{2}}}\right)}{a^{2} e q\left(b+2 c x-\sqrt{-4 a c+b^{2}}\right)}
$$

$$
-\frac{1}{a\left(-4 a c+b^{2}\right) e\left(a e^{2}-b d e+c d^{2}\right) q\left(b+2 c x-\sqrt{-4 a c+b^{2}}\right)}\left(c(e x+d)^{q+1} \text { hypergeom }([1,1],[1-q]\right.
$$

$$
\left.\left.\frac{-2 c d+e\left(b-\sqrt{-4 a c+b^{2}}\right)}{e\left(b+2 c x-\sqrt{-4 a c+b^{2}}\right)}\right)\left(e\left(2 a c e-b^{2} e+b c d\right) q+\frac{-2 b c\left(c d^{2}+a e^{2}(1-2 q)\right)-4 a c^{2} d e q-b^{3} e^{2} q+b^{2} c d e(2+q)}{\sqrt{-4 a c+b^{2}}}\right)\right)
$$

$$
-\frac{c(e x+d)^{q+1} \text { hypergeom }\left([1,1],[1-q], \frac{-2 c d+e\left(b+\sqrt{-4 a c+b^{2}}\right)}{e\left(b+2 c x+\sqrt{-4 a c+b^{2}}\right)}\right)\left(1-\frac{b}{\sqrt{-4 a c+b^{2}}}\right)}{a^{2} e q\left(b+2 c x+\sqrt{-4 a c+b^{2}}\right)}
$$

$$
-\frac{1}{a\left(-4 a c+b^{2}\right) e\left(a e^{2}-b d e+c d^{2}\right) q\left(b+2 c x+\sqrt{-4 a c+b^{2}}\right)}\left(c(e x+d)^{q+1} \text { hypergeom }([1,1],[1-q]\right.
$$

$$
\left.\left.\frac{-2 c d+e\left(b+\sqrt{-4 a c+b^{2}}\right)}{e\left(b+2 c x+\sqrt{-4 a c+b^{2}}\right)}\right)\left(e\left(2 a c e-b^{2} e+b c d\right) q+\frac{2 b c\left(c d^{2}+a e^{2}(1-2 q)\right)+4 a c^{2} d e q+b^{3} e^{2} q-b^{2} c d e(2+q)}{\sqrt{-4 a c+b^{2}}}\right)\right)
$$

Result(type 8, 31 leaves):

$$
\int \frac{\left(d+e x^{n}\right)^{q}}{x\left(a+b x^{n}+c x^{2 n}\right)^{2}} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \frac{\left(d+e x^{n}\right)^{q}}{x^{2}\left(a+b x^{n}+c x^{2 n}\right)^{2}} d x
$$

Optimal(type 1, 1 leaves, 0 steps):

Result(type 8, 31 leaves):

$$
\int \frac{\left(d+e x^{n}\right)^{q}}{x^{2}\left(a+b x^{n}+c x^{2 n}\right)^{2}} \mathrm{~d} x
$$

Test results for the 7 problems in "1.2.3.5 $P(x)(d x)^{\wedge} m\left(a+b x^{\wedge} n+c x^{\wedge}(2 n)\right)^{\wedge} p . t x t^{\prime \prime}$
Problem 1: Result is not expressed in closed-form.

$$
\int \frac{m x^{8}+l x^{7}+k x^{6}+j x^{5}+h x^{4}+g x^{3}+x^{2} f+e x+d}{c x^{6}+b x^{3}+a} \mathrm{~d} x
$$

Optimal(type 3, 1374 leaves, 37 steps):

$$
\begin{aligned}
& \frac{k x}{c}+\frac{l x^{2}}{2 c}+\frac{m x^{3}}{3 c}+\frac{(-b m+c j) \ln \left(c x^{6}+b x^{3}+a\right)}{6 c^{2}}+\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(g-\frac{b k}{c}+\frac{2 c^{2} d+b^{2} k-c(2 a k+b g)}{c \sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{} \\
&-\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(g-\frac{b k}{c}+\frac{2 c^{2} d+b^{2} k-c(2 a k+b g)}{c \sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{12 c^{1 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}}
\end{aligned}
$$

$$
-\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(g-\frac{b k}{c}+\frac{2 c^{2} d+b^{2} k-c(2 a k+b g)}{c \sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{(2 / 3}
$$

$$
6 c^{1 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}
$$

$$
-\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(h-\frac{b l}{c}+\frac{2 c^{2} e+b^{2} l-c(2 a l+b h)}{c \sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{6 c^{2 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
$$

$$
+\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b-\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(h-\frac{b l}{c}+\frac{2 c^{2} e+b^{2} l-c(2 a l+b h)}{c \sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{}
$$

$$
12 c^{2 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}
$$

$$
-\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(h-\frac{b l}{c}+\frac{2 c^{2} e+b^{2} l-c(2 a l+b h)}{c \sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3} \sqrt{3}}{6 c^{2 / 3}\left(b-\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}
$$

$$
\begin{aligned}
& -\underline{\left(-2 a c m+b^{2} m-b c j+2 c^{2} f\right) \operatorname{arctanh}\left(\frac{2 c x^{3}+b}{\sqrt{-4 a c+b^{2}}}\right)} \\
& 3 c^{2} \sqrt{-4 a c+b^{2}} \\
& +\frac{\ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(g-\frac{b k}{c}+\frac{2 a c k-b^{2} k+b c g-2 c^{2} d}{c \sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{6 c^{1 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& -\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(g-\frac{b k}{c}+\frac{2 a c k-b^{2} k+b c g-2 c^{2} d}{c \sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3}}{} \\
& 12 c^{1 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3} \\
& -\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(g-\frac{b k}{c}+\frac{2 a c k-b^{2} k+b c g-2 c^{2} d}{c \sqrt{-4 a c+b^{2}}}\right) 2^{2 / 3} \sqrt{3}}{6 c^{1 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}} \\
& \ln \left(2^{1 / 3} c^{1 / 3} x+\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}\right)\left(h-\frac{b l}{c}+\frac{2 a c l-b^{2} l+b c h-2 c^{2} e}{c \sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3} \\
& 6 c^{2 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3} \\
& +\frac{\ln \left(2^{2 / 3} c^{2 / 3} x^{2}-2^{1 / 3} c^{1 / 3} x\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}+\left(b+\sqrt{-4 a c+b^{2}}\right)^{2 / 3}\right)\left(h-\frac{b l}{c}+\frac{2 a c l-b^{2} l+b c h-2 c^{2} e}{c \sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3}}{c \sqrt{1 / 3}} \\
& 12 c^{2 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1} \\
& -\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3} c^{1 / 3} x}{\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)\left(h-\frac{b l}{c}+\frac{2 a c l-b^{2} l+b c h-2 c^{2} e}{c \sqrt{-4 a c+b^{2}}}\right) 2^{1 / 3} \sqrt{3}}{1 / 3} \\
& 6 c^{2 / 3}\left(b+\sqrt{-4 a c+b^{2}}\right)^{1 / 3}
\end{aligned}
$$

Result(type 7, 133 leaves):
$\frac{m x^{3}}{3 c}+\frac{l x^{2}}{2 c}+\frac{k x}{c}$

Problem 2: Unable to integrate problem.

$$
\int \frac{e x+d}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Optimal(type 5, 255 leaves, 9 steps):

$$
-\frac{2 c d x \text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)}{b^{2}-4 a c-b \sqrt{-4 a c+b^{2}}}-\frac{c e x^{2} \operatorname{hypergeom}\left(\left[1, \frac{2}{n}\right],\left[\frac{n+2}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)}{b^{2}-4 a c-b \sqrt{-4 a c+b^{2}}}
$$

$$
-\frac{2 c d x \text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}}-\frac{c e x^{2} \text { hypergeom }\left(\left[1, \frac{2}{n}\right],\left[\frac{n+2}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}}
$$

Result(type 8, 24 leaves):

$$
\int \frac{e x+d}{a+b x^{n}+c x^{2 n}} \mathrm{~d} x
$$

Problem 3: Unable to integrate problem.

$$
\int \frac{e x+d}{\left(a+b x^{n}+c x^{2 n}\right)^{2}} d x
$$

Optimal(type 5, 718 leaves, 15 steps):

$$
\frac{d x\left(b^{2}-2 a c+b c x^{n}\right)}{a\left(-4 a c+b^{2}\right) n\left(a+b x^{n}+c x^{2 n}\right)}+\frac{e x^{2}\left(b^{2}-2 a c+b c x^{n}\right)}{a\left(-4 a c+b^{2}\right) n\left(a+b x^{n}+c x^{2 n}\right)}
$$

$$
\begin{aligned}
-\frac{2 b c^{2} e(-n+2) x^{n+2} \text { hypergeom }\left(\left[1, \frac{n+2}{n}\right],\left[2+\frac{2}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)}{a\left(-4 a c+b^{2}\right)^{3 / 2} n(n+2)\left(b-\sqrt{-4 a c+b^{2}}\right)} \\
+\frac{2 b c^{2} e(-n+2) x^{n+2} \text { hypergeom }\left(\left[1, \frac{n+2}{n}\right],\left[2+\frac{2}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)}{a\left(-4 a c+b^{2}\right)^{3 / 2} n(n+2)\left(b+\sqrt{-4 a c+b^{2}}\right)}
\end{aligned}
$$

$$
-c e\left(4 a c(1-n)-b^{2}(-n+2)\right) x^{2} \text { hypergeom }\left(\left[1, \frac{2}{n}\right],\left[\frac{n+2}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)
$$

$$
-c e\left(4 a c(1-n)-b^{2}(-n+2)\right) x^{2} \text { hypergeom }\left(\left[1, \frac{2}{n}\right],\left[\frac{n+2}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)
$$

$$
a\left(-4 a c+b^{2}\right) n\left(b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}\right)
$$

$$
\begin{gathered}
-\frac{c d x \text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b-\sqrt{-4 a c+b^{2}}}\right)\left(4 a c(1-2 n)-b^{2}(1-n)-b(1-n) \sqrt{-4 a c+b^{2}}\right)}{a\left(-4 a c+b^{2}\right) n\left(b^{2}-4 a c-b \sqrt{-4 a c+b^{2}}\right)} \\
-\frac{c d x \text { hypergeom }\left(\left[1, \frac{1}{n}\right],\left[1+\frac{1}{n}\right],-\frac{2 c x^{n}}{b+\sqrt{-4 a c+b^{2}}}\right)\left(4 a c(1-2 n)-b^{2}(1-n)+b(1-n) \sqrt{-4 a c+b^{2}}\right)}{a\left(-4 a c+b^{2}\right) n\left(b^{2}-4 a c+b \sqrt{-4 a c+b^{2}}\right)}
\end{gathered}
$$

Result(type 8, 201 leaves):
$\frac{x(e x+d)\left(-b c \mathrm{e}^{n \ln (x)}+2 a c-b^{2}\right)}{\left(4 a c-b^{2}\right) a n\left(a+b \mathrm{e}^{n \ln (x)}+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)}+$
$\int \frac{-b c e n x \mathrm{e}^{n \ln (x)}+4 a c e n x-b^{2} e n x-b c d n \mathrm{e}^{n \ln (x)}+2 b c x e \mathrm{e}^{n \ln (x)}+4 a c d n-4 a c e x-b^{2} d n+2 b^{2} e x+b c d \mathrm{e}^{n \ln (x)}-2 d c a+b^{2} d}{\left(4 a c-b^{2}\right) a n\left(a+b \mathrm{e}^{n \ln (x)}+c\left(\mathrm{e}^{n \ln (x)}\right)^{2}\right)} \mathrm{d} x$

Problem 4: Unable to integrate problem.

$$
\int \frac{-a h x^{-1+\frac{n}{2}}+c f x^{-1+n}+c g x^{-1+2 n}+c h x^{-1+\frac{5 n}{2}}}{\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 71 leaves, 2 steps):

$$
-\frac{2\left(c(-2 a g+b f)+\left(-4 a c+b^{2}\right) h x^{\frac{n}{2}}+c(-b g+2 c f) x^{n}\right)}{\left(-4 a c+b^{2}\right) n \sqrt{a+b x^{n}+c x^{2 n}}}
$$

Result(type 8, 59 leaves):

$$
\int \frac{-a h x^{-1+\frac{n}{2}}+c f x^{-1+n}+c g x^{-1+2 n}+c h x^{-1+\frac{5 n}{2}}}{\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 5: Unable to integrate problem.

$$
\int \frac{(d x)^{-1+\frac{n}{2}}\left(-a h+c f x^{\frac{n}{2}}+c g x^{\frac{3 n}{2}}+c h x^{2 n}\right)}{\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 87 leaves, 2 steps):

$$
-\frac{2 x^{1-\frac{n}{2}}(d x)^{-1+\frac{n}{2}}\left(c(-2 a g+b f)+\left(-4 a c+b^{2}\right) h x^{\frac{n}{2}}+c(-b g+2 c f) x^{n}\right)}{\left(-4 a c+b^{2}\right) n \sqrt{a+b x^{n}+c x^{2 n}}}
$$

Result(type 8, 57 leaves):

$$
\int \frac{(d x)^{-1+\frac{n}{2}}\left(-a h+c f x^{\frac{n}{2}}+c g x^{\frac{3 n}{2}}+c h x^{2 n}\right)}{\left(a+b x^{n}+c x^{2 n}\right)^{3 / 2}} d x
$$

Problem 6: Unable to integrate problem.

$$
\int(g x)^{m}\left(a+b x^{n}+c x^{2 n}\right)^{p}\left(a(1+m)+b(n p+m+n+1) x^{n}+c(1+m+2 n(1+p)) x^{2 n}\right) \mathrm{d} x
$$

Optimal(type 3, 29 leaves, 1 step):

$$
\frac{(g x)^{1+m}\left(a+b x^{n}+c x^{2 n}\right)^{1+p}}{g}
$$

Result(type 8, 58 leaves):

$$
\int(g x)^{m}\left(a+b x^{n}+c x^{2 n}\right)^{p}\left(a(1+m)+b(n p+m+n+1) x^{n}+c(1+m+2 n(1+p)) x^{2 n}\right) \mathrm{d} x
$$

Problem 7: Unable to integrate problem.

$$
\int \frac{A+B x^{n}+C x^{2 n}+\mathrm{D} x^{3 n}}{\left(a+b x^{n}+c x^{2 n}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 5, 485 leaves, 4 steps):

$$
\frac{x\left(A c\left(-2 a c+b^{2}\right)-a(b B c-2 a c C+a b \mathrm{D})+\left(b c(A c+a C)-a b^{2} \mathrm{D}-2 a c(B c-a \mathrm{D})\right) x^{n}\right)}{a c\left(-4 a c+b^{2}\right) n\left(a+b x^{n}+c x^{2 n}\right)}
$$

$$
+\frac{1}{a c\left(-4 a c+b^{2}\right) n\left(b-\sqrt{-4 a c+b^{2}}\right)}\left(x \operatorname { h y p e r g e o m } ([1 , \frac { 1 } { n }] , [1 + \frac { 1 } { n }] , - \frac { 2 c x ^ { n } } { b - \sqrt { - 4 a c + b ^ { 2 } } }) \left(a b^{2} \mathrm{D}-b c(A c+a C)(1-n)+2 a c(B c(1\right.\right.
$$

$$
\left.\left.-n)-a \mathrm{D}(1+n))+\frac{A c^{2}\left(4 a c(1-2 n)-b^{2}(1-n)\right)-a\left(4 a c^{2} C+b^{3} \mathrm{D}-b^{2} c C(1-n)-2 b c(B c n+a \mathrm{D}(n+2))\right)}{\sqrt{-4 a c+b^{2}}}\right)\right)
$$

$$
+\frac{1}{a c\left(-4 a c+b^{2}\right) n\left(b+\sqrt{-4 a c+b^{2}}\right)}\left(x \operatorname { h y p e r g e o m } ([1 , \frac { 1 } { n }] , [1 + \frac { 1 } { n }] , - \frac { 2 c x ^ { n } } { b + \sqrt { - 4 a c + b ^ { 2 } } }) \left(a b^{2} \mathrm{D}-b c(A c+a C)(1-n)+2 a c(B c(1\right.\right.
$$

$$
\left.\left.-n)-a \mathrm{D}(1+n))+\frac{-A c^{2}\left(4 a c(1-2 n)-b^{2}(1-n)\right)+a\left(4 a c^{2} C+b^{3} \mathrm{D}-b^{2} c C(1-n)-2 b c(B c n+a \mathrm{D}(n+2))\right)}{\sqrt{-4 a c+b^{2}}}\right)\right)
$$

Result(type 8, 40 leaves):

$$
\int \frac{A+B x^{n}+C x^{2 n}+\mathrm{D} x^{3 n}}{\left(a+b x^{n}+c x^{2 n}\right)^{2}} \mathrm{~d} x
$$

259 integration problems

A - 121 optimal antiderivatives
B - 23 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 115 unable to integrate problems
E - O integration timeouts

